Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(3): 516-9, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622238

RESUMEN

MicroRNAs (miRNAs) are versatile regulators of gene expression in higher eukaryotes. In order to silence many different mRNAs in a precise manner, miRNA stability and efficacy is controlled by highly developed regulatory pathways and fine-tuning mechanisms both affecting miRNA processing and altering mature miRNA target specificity.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Animales , Humanos , MicroARNs/química , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo
2.
Nat Chem Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951647

RESUMEN

Nature has evolved biosynthetic pathways to molecules possessing reactive warheads that inspired the development of many therapeutic agents, including penicillin antibiotics. Peptides armed with electrophilic warheads have proven to be particularly effective covalent inhibitors, providing essential antimicrobial, antiviral and anticancer agents. Here we provide a full characterization of the pathways that nature deploys to assemble peptides with ß-lactone warheads, which are potent proteasome inhibitors with promising anticancer activity. Warhead assembly involves a three-step cryptic methylation sequence, which is likely required to reduce unfavorable electrostatic interactions during the sterically demanding ß-lactonization. Amide-bond synthetase and adenosine triphosphate (ATP)-grasp enzymes couple amino acids to the ß-lactone warhead, generating the bioactive peptide products. After reconstituting the entire pathway to ß-lactone peptides in vitro, we go on to deliver a diverse range of analogs through enzymatic cascade reactions. Our approach is more efficient and cleaner than the synthetic methods currently used to produce clinically important warhead-containing peptides.

3.
Proc Natl Acad Sci U S A ; 120(14): e2300150120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996117

RESUMEN

The cell cycle checkpoint kinase Mec1ATR and its integral partner Ddc2ATRIP are vital for the DNA damage and replication stress response. Mec1-Ddc2 "senses" single-stranded DNA (ssDNA) by being recruited to the ssDNA binding Replication Protein A (RPA) via Ddc2. In this study, we show that a DNA damage-induced phosphorylation circuit modulates checkpoint recruitment and function. We demonstrate that Ddc2-RPA interactions modulate the association between RPA and ssDNA and that Rfa1-phosphorylation aids in the further recruitment of Mec1-Ddc2. We also uncover an underappreciated role for Ddc2 phosphorylation that enhances its recruitment to RPA-ssDNA that is important for the DNA damage checkpoint in yeast. The crystal structure of a phosphorylated Ddc2 peptide in complex with its RPA interaction domain provides molecular details of how checkpoint recruitment is enhanced, which involves Zn2+. Using electron microscopy and structural modeling approaches, we propose that Mec1-Ddc2 complexes can form higher order assemblies with RPA when Ddc2 is phosphorylated. Together, our results provide insight into Mec1 recruitment and suggest that formation of supramolecular complexes of RPA and Mec1-Ddc2, modulated by phosphorylation, would allow for rapid clustering of damage foci to promote checkpoint signaling.


Asunto(s)
Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 299(8): 104929, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330173

RESUMEN

Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks, the most severe form of DNA damage. The Rad51 protein is central to HR, but multiple auxiliary factors regulate its activity. The heterodimeric Swi5-Sfr1 complex is one such factor. It was previously shown that two sites within the intrinsically disordered domain of Sfr1 are critical for the interaction with Rad51. Here, we show that phosphorylation of five residues within this domain regulates the interaction of Swi5-Sfr1 with Rad51. Biochemical reconstitutions demonstrated that a phosphomimetic mutant version of Swi5-Sfr1 is defective in both the physical and functional interaction with Rad51. This translated to a defect in DNA repair, with the phosphomimetic mutant yeast strain phenocopying a previously established interaction mutant. Interestingly, a strain in which Sfr1 phosphorylation was blocked also displayed sensitivity to DNA damage. Taken together, we propose that controlled phosphorylation of Sfr1 is important for the role of Swi5-Sfr1 in promoting Rad51-dependent DNA repair.


Asunto(s)
Reparación del ADN , Recombinasa Rad51 , Proteínas de Schizosaccharomyces pombe , Roturas del ADN de Doble Cadena , Daño del ADN , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Mutación , Fosforilación
5.
Proc Biol Sci ; 289(1985): 20220521, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36285494

RESUMEN

Scavenging by large carnivores is integral for ecosystem functioning by limiting the build-up of carrion and facilitating widespread energy flows. However, top carnivores have declined across the world, triggering trophic shifts within ecosystems. Here, we compare findings from previous work on predator decline against areas with recent native mammalian carnivore loss. Specifically, we investigate top-down control on utilization of experimentally placed carcasses by two mesoscavengers-the invasive feral cat and native forest raven. Ravens profited most from carnivore loss, scavenging for five times longer in the absence of native mammalian carnivores. Cats scavenged on half of all carcasses in the region without dominant native carnivores. This was eight times more than in areas where other carnivores were at high densities. All carcasses persisted longer than the three-week monitoring period in the absence of native mammalian carnivores, while in areas with high carnivore abundance, all carcasses were fully consumed. Our results reveal that top-carnivore loss amplifies impacts associated with carnivore decline-increased carcass persistence and carrion access for smaller scavengers. This suggests that even at low densities, native mammalian carnivores can fulfil their ecological functions, demonstrating the significance of global carnivore conservation and supporting management approaches, such as trophic rewilding.


Asunto(s)
Carnívoros , Ecosistema , Gatos , Animales , Cadena Alimentaria , Conducta Predatoria , Aves , Peces
6.
Mol Cell ; 53(4): 645-54, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24486019

RESUMEN

Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.


Asunto(s)
Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Oxigenasas de Función Mixta/química , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/química , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Animales , Catálisis , Línea Celular Tumoral , Codón de Terminación , Células HeLa , Humanos , Hidrólisis , Hidroxilación , Histona Demetilasas con Dominio de Jumonji , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
7.
Circ Res ; 124(1): 52-65, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30582444

RESUMEN

RATIONALE: Increased expression of CLIC4 (chloride intracellular channel 4) is a feature of endothelial dysfunction in pulmonary arterial hypertension, but its role in disease pathology is not fully understood. OBJECTIVE: To identify CLIC4 effectors and evaluate strategies targeting CLIC4 signaling in pulmonary hypertension. METHODS AND RESULTS: Proteomic analysis of CLIC4-interacting proteins in human pulmonary artery endothelial cells identified regulators of endosomal trafficking, including Arf6 (ADP ribosylation factor 6) GTPase activating proteins and clathrin, while CLIC4 overexpression affected protein regulators of vesicular trafficking, lysosomal function, and inflammation. CLIC4 reduced BMPRII (bone morphogenetic protein receptor II) expression and signaling as a result of Arf6-mediated reduction in gyrating clathrin and increased lysosomal targeting of the receptor. BMPRII expression was restored by Arf6 siRNA, Arf inhibitor Sec7 inhibitor H3 (SecinH3), and inhibitors of clathrin-mediated endocytosis but was unaffected by chloride channel inhibitor, indanyloxyacetic acid 94 or Arf1 siRNA. The effects of CLIC4 on NF-κB (nuclear factor-kappa B), HIF (hypoxia-inducible factor), and angiogenic response were prevented by Arf6 siRNA and SecinH3. Sugen/hypoxia mice and monocrotaline rats showed elevated expression of CLIC4, activation of Arf6 and NF-κB, and reduced expression of BMPRII in the lung. These changes were established early during disease development. Lung endothelium-targeted delivery of CLIC4 siRNA or treatment with SecinH3 attenuated the disease, reduced CLIC4/Arf activation, and restored BMPRII expression in the lung. Endothelial colony-forming cells from idiopathic pulmonary hypertensive patients showed upregulation of CLIC4 expression and Arf6 activity, suggesting potential importance of this pathway in the human condition. CONCLUSIONS: Arf6 is a novel effector of CLIC4 and a new therapeutic target in pulmonary hypertension.


Asunto(s)
Factores de Ribosilacion-ADP/antagonistas & inhibidores , Antihipertensivos/farmacología , Canales de Cloruro/metabolismo , Células Endoteliales/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Proteínas Mitocondriales/metabolismo , Arteria Pulmonar/efectos de los fármacos , Tratamiento con ARN de Interferencia , Triazoles/farmacología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Cultivadas , Canales de Cloruro/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipoxia/complicaciones , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Terapia Molecular Dirigida , Monocrotalina , Proteómica/métodos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal
8.
J Anim Ecol ; 90(10): 2268-2276, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34013520

RESUMEN

Global road networks facilitate habitat modification and are integral to human expansion. Many animals, particularly scavengers, use roads as they provide a reliable source of food, such as carrion left after vehicle collisions. Tasmania is often cited as the 'roadkill capital of Australia', with the isolated offshore islands in the Bass Strait experiencing similar, if not higher, levels of roadkill. However, native mammalian predators on the islands are extirpated, meaning the remaining scavengers are likely to experience lower interference competition. In this study, we used a naturally occurring experiment to examine how the loss of mammalian carnivores within a community impacts roadside foraging behaviour by avian scavengers. We monitored the locations of roadkill and forest ravens Corvus tasmanicus, an abundant scavenger species, on eight road transects across the Tasmanian mainland (high scavenging competition) and the Bass Strait islands (low scavenging competition). We represented raven observations as one-dimensional point patterns, using hierarchical Bayesian models to investigate the dependence of raven spatial intensity on habitat, season, distance to roadkill and route location. We found that roadkill carcasses were a strong predictor of raven presence along road networks. The effect of roadkill was amplified on roads on the Bass Strait islands, where roadside carrion was a predictor of raven presence across the entire year. In contrast, ravens were more often associated with roadkill on Tasmanian mainland roads in the autumn, when other resources were low. This suggests that in the absence of competing mammalian scavengers, ravens choose to feed on roadside carrion throughout the year, even in seasons when other resources are available. This lack of competition could be disproportionately benefiting forest ravens, leading to augmented raven populations and changes to the vertebrate community structure. Our study provides evidence that scavengers modify their behaviour in response to reduced scavenger species diversity, potentially triggering trophic shifts and highlighting the importance of conserving or reintroducing carnivores within ecosystems.


Asunto(s)
Carnívoros , Ecosistema , Animales , Teorema de Bayes , Cadena Alimentaria , Islas , Estaciones del Año
9.
Nature ; 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33432209
10.
Cell Mol Life Sci ; 77(1): 3-18, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31748913

RESUMEN

Homologous recombination (HR) is a pathway to faithfully repair DNA double-strand breaks (DSBs). At the core of this pathway is a DNA recombinase, which, as a nucleoprotein filament on ssDNA, pairs with homologous DNA as a template to repair the damaged site. In eukaryotes Rad51 is the recombinase capable of carrying out essential steps including strand invasion, homology search on the sister chromatid and strand exchange. Importantly, a tightly regulated process involving many protein factors has evolved to ensure proper localisation of this DNA repair machinery and its correct timing within the cell cycle. Dysregulation of any of the proteins involved can result in unchecked DNA damage, leading to uncontrolled cell division and cancer. Indeed, many are tumour suppressors and are key targets in the development of new cancer therapies. Over the past 40 years, our structural and mechanistic understanding of homologous recombination has steadily increased with notable recent advancements due to the advances in single particle cryo electron microscopy. These have resulted in higher resolution structural models of the signalling proteins ATM (ataxia telangiectasia mutated), and ATR (ataxia telangiectasia and Rad3-related protein), along with various structures of Rad51. However, structural information of the other major players involved, such as BRCA1 (breast cancer type 1 susceptibility protein) and BRCA2 (breast cancer type 2 susceptibility protein), has been limited to crystal structures of isolated domains and low-resolution electron microscopy reconstructions of the full-length proteins. Here we summarise the current structural understanding of homologous recombination, focusing on key proteins in recruitment and signalling events as well as the mediators for the Rad51 recombinase.


Asunto(s)
Daño del ADN , Mapas de Interacción de Proteínas , Reparación del ADN por Recombinación , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteína BRCA2/química , Proteína BRCA2/metabolismo , ADN/química , ADN/genética , Humanos , Modelos Moleculares , Conformación Proteica , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo
11.
Age Ageing ; 49(3): 309-318, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32103233

RESUMEN

Iron deficiency anaemia (IDA) is common in older adults and associated with a range of adverse outcomes. Differentiating iron deficiency from other causes of anaemia is important to ensure appropriate investigations and treatment. It is possible to make the diagnosis reliably using simple blood tests. Clinical evaluation and assessment are required to help determine the underlying cause and to initiate appropriate investigations. IDA in men and post-menopausal females is most commonly due to occult gastrointestinal blood loss until proven otherwise, although there is a spectrum of underlying causative pathologies. Investigation decisions should take account of the wishes of the patient and their competing comorbidities, individualising the approach. Management involves supplementation using oral or intravenous (IV) iron then consideration of treatment of the underlying cause of deficiency. Future research areas are outlined including the role of Hepcidin and serum soluble transferrin receptor measurement, quantitative faecal immunochemical testing, alternative dosing regimens and the potential role of IV iron preparations.


Asunto(s)
Anemia Ferropénica , Anemia , Anciano , Anemia Ferropénica/diagnóstico , Anemia Ferropénica/tratamiento farmacológico , Femenino , Hemorragia Gastrointestinal , Humanos , Hierro , Masculino
12.
Nano Lett ; 18(6): 3466-3472, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29631399

RESUMEN

Understanding the impact of lattice imperfections on nanoscale thermal transport is crucial for diverse applications ranging from thermal management to energy conversion. Grain boundaries (GBs) are ubiquitous defects in polycrystalline materials, which scatter phonons and reduce thermal conductivity (κ). Historically, their impact on heat conduction has been studied indirectly through spatially averaged measurements, that provide little information about phonon transport near a single GB. Here, using spatially resolved time-domain thermoreflectance (TDTR) measurements in combination with electron backscatter diffraction (EBSD), we make localized measurements of κ within few µm of individual GBs in boron-doped polycrystalline diamond. We observe strongly suppressed thermal transport near GBs, a reduction in κ from ∼1000 W m-1 K-1 at the center of large grains to ∼400 W m-1 K-1 in the immediate vicinity of GBs. Furthermore, we show that this reduction in κ is measured up to ∼10 µm away from a GB. A theoretical model is proposed that captures the local reduction in phonon mean-free-paths due to strongly diffuse phonon scattering at the disordered grain boundaries. Our results provide a new framework for understanding phonon-defect interactions in nanomaterials, with implications for the use of high-κ polycrystalline materials as heat sinks in electronics thermal management.

13.
Biochem J ; 474(4): 539-556, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27974389

RESUMEN

Kindlins co-activate integrins alongside talin. They possess, like talin, a FERM domain (4.1-erythrin-radixin-moiesin domain) comprising F0-F3 subdomains, but with a pleckstrin homology (PH) domain inserted in the F2 subdomain that enables membrane association. We present the crystal structure of murine kindlin-3 PH domain determined at a resolution of 2.23 Šand characterise its lipid binding using biophysical and computational approaches. Molecular dynamics simulations suggest flexibility in the PH domain loops connecting ß-strands forming the putative phosphatidylinositol phosphate (PtdInsP)-binding site. Simulations with PtdInsP-containing bilayers reveal that the PH domain associates with PtdInsP molecules mainly via the positively charged surface presented by the ß1-ß2 loop and that it binds with somewhat higher affinity to PtdIns(3,4,5)P3 compared with PtdIns(4,5)P2 Surface plasmon resonance (SPR) with lipid headgroups immobilised and the PH domain as an analyte indicate affinities of 300 µM for PtdIns(3,4,5)P3 and 1 mM for PtdIns(4,5)P2 In contrast, SPR studies with an immobilised PH domain and lipid nanodiscs as the analyte show affinities of 0.40 µM for PtdIns(3,4,5)P3 and no affinity for PtdIns(4,5)P2 when the inositol phosphate constitutes 5% of the total lipids (∼5 molecules per nanodisc). Reducing the PtdIns(3,4,5)P3 composition to 1% abolishes nanodisc binding to the PH domain, as does site-directed mutagenesis of two lysines within the ß1-ß2 loop. Binding of PtdIns(3,4,5)P3 by a canonical PH domain, Grp1, is not similarly influenced by SPR experimental design. These data suggest a role for PtdIns(3,4,5)P3 clustering in the binding of some PH domains and not others, highlighting the importance of lipid mobility and clustering for the biophysical assessment of protein-membrane interactions.


Asunto(s)
Proteínas del Citoesqueleto/química , Fosfatidilcolinas/química , Fosfatidilinositoles/química , Fosfatidilserinas/química , Dominios Homólogos a Pleckstrina , Receptores Citoplasmáticos y Nucleares/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Ratones , Simulación de Dinámica Molecular , Fosfatidilcolinas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
Nucleic Acids Res ; 43(5): 2968-79, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25712096

RESUMEN

Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3' ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164-N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes-for example by the binding of protein co-factors-may allow them alternatively to add single or multiple uridyl residues to the 3' termini of RNA molecules.


Asunto(s)
Nucleotidiltransferasas/metabolismo , ARN Nucleotidiltransferasas/metabolismo , ARN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Estructura Terciaria de Proteína , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/genética , ARN de Hongos/genética , Rotación , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Uridina Trifosfato/metabolismo
15.
Br J Sociol ; 68(1): 97-118, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27859004

RESUMEN

Sociology traditionally accounts for eating in terms of the social organization of meals, their provision and consumption. A recurrent public concern is that the meal is being subverted. This paper examines meal arrangements in British households in 2012, drawing on an online survey in the format of a food diary administered to 2784 members of a supermarket consumer panel. It charts the organization of contemporary eating occasions, paying attention to socio-demographic variation in practice. Especially, it explores companionless meals, putting them in contexts of food provisioning and temporal rhythms. Findings show that eating alone is associated with simpler, quicker meals, and that it takes place most commonly in the morning and midday. Those living alone eat alone more often, but at similar meal times, and they take longer over their lone meals. Comparison with a similar study in 1955-6 suggests some fragmentation or relaxation in collective schedules. The implications are not straightforward, and the causes probably lie more in institutional shifts than personal preferences. Declining levels of commensality are, however, associated with a reduction in household size and, especially in households with children, difficulties of coordinating family members' schedules.


Asunto(s)
Conducta Alimentaria/psicología , Comidas , Conducta Social , Adulto , Anciano , Familia , Composición Familiar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Distribución por Sexo , Factores Socioeconómicos , Encuestas y Cuestionarios , Reino Unido
16.
Appetite ; 84: 299-308, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25451585

RESUMEN

This paper examines food eaten at meals in Great Britain. It presents findings about contemporary meal content, reflecting on the relationship between meal content and occasion, and makes comparison with an earlier study. Drawing on an online survey (N = 2784), conducted in September 2012, it describes the food consumed at daily eating events in terms of content, volume and complexity, common components and combinations, and sequence. Socio-demographic and economic differences are examined. Conceptual tools for analysing the association between food content and meal occasions are refined. The paper first explores the regularity of meal patterns. This is followed by description of the contours of the three principal daily eating events, with a brief section on snacks. The paper interprets distinctive features of current patterns by way of comparison with a similar study of eating habits in the 1950s. Findings reveal morning and midday eating events as simple and homogeneous in content, particularly on weekdays, with respondents breakfasting on cereal or toast, and lunching on sandwiches. Evening meals are more complex, structured and varied in content. Common patterns and systematic differentiation can be discerned, particularly across age cohort. Significant historical change can also be observed in relation to meal content and, to a lesser extent, meal pattern.


Asunto(s)
Dieta/tendencias , Comidas , Adulto , Anciano , Encuestas sobre Dietas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reino Unido , Adulto Joven
17.
Br J Sociol ; 66(2): 236-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25597324

RESUMEN

The relations between everyday life and political participation are of interest for much contemporary social science. Yet studies of social movement protest still pay disproportionate attention to moments of mobilization, and to movements with clear organizational boundaries, tactics and goals. Exceptions have explored collective identity, 'free spaces' and prefigurative politics, but such processes are framed as important only in accounting for movements in abeyance, or in explaining movement persistence. This article focuses on the social practices taking place in and around social movement spaces, showing that political meanings, knowledge and alternative forms of social organization are continually being developed and cultivated. Social centres in Barcelona, Spain, autonomous political spaces hosting cultural and educational events, protest campaigns and alternative living arrangements, are used as empirical case studies. Daily practices of food provisioning, distributing space and dividing labour are politicized and politicizing as they unfold and develop over time and through diverse networks around social centres. Following Melucci, such latent processes set the conditions for social movements and mobilization to occur. However, they not only underpin mobilization, but are themselves politically expressive and prefigurative, with multiple layers of latency and visibility identifiable in performances of practices. The variety of political forms - adversarial, expressive, theoretical, and routinized everyday practices, allow diverse identities, materialities and meanings to overlap in movement spaces, and help explain networks of mutual support between loosely knit networks of activists and non-activists. An approach which focuses on practices and networks rather than mobilization and collective actors, it is argued, helps show how everyday life and political protest are mutually constitutive.


Asunto(s)
Conflicto Psicológico , Política , Cambio Social , Medio Social , Participación Social , Apoyo Social , Valores Sociales , Humanos , España
18.
ACS Appl Mater Interfaces ; 16(8): 11003-11012, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373710

RESUMEN

Bonding diamond to the back side of gallium nitride (GaN) electronics has been shown to improve thermal management in lateral devices; however, engineering challenges remain with the bonding process and characterizing the bond quality for vertical device architectures. Here, integration of these two materials is achieved by room-temperature compression bonding centimeter-scale GaN and a diamond die via an intermetallic bonding layer of Ti/Au. Recent attempts at GaN/diamond bonding have utilized a modified surface activation bonding (SAB) method, which requires Ar fast atom bombardment immediately followed by bonding within the same tool under ultrahigh vacuum (UHV) conditions. The method presented here does not require a dedicated SAB tool yet still achieves bonding via a room-temperature metal-metal compression process. Imaging of the buried interface and the total bonding area is achieved via transmission electron microscopy (TEM) and confocal acoustic scanning microscopy (C-SAM), respectively. The thermal transport quality of the bond is extracted from spatially resolved frequency-domain thermoreflectance (FDTR) with the bonded areas boasting a thermal boundary conductance of >100 MW/m2·K. Additionally, Raman maps of GaN near the GaN-diamond interface reveal a low level of compressive stress, <80 MPa, in well-bonded regions. FDTR and Raman were coutilized to map these buried interfaces and revealed some poor thermally bonded areas bordered by high-stress regions, highlighting the importance of spatial sampling for a complete picture of bond quality. Overall, this work demonstrates a novel method for thermal management in vertical GaN devices that maintains low intrinsic stresses while boasting high thermal boundary conductances.

19.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071279

RESUMEN

Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central player of several crucial processes in repairing and protecting genome integrity, forms filaments on DNA. RAD51 filaments are tightly regulated. One of these regulators is FIGNL1, that prevents persistent RAD51 foci post-damage and genotoxic chromatin association in cells. The cryogenic electron microscopy structure of FIGNL1 in complex with RAD51 reveals that the FIGNL1 forms a non-planar hexamer and RAD51 N-terminus is enclosed in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a unique mechanism for removing RAD51 from DNA and provides the molecular basis for FIGNL1 in maintaining genome stability.

20.
ACS Appl Mater Interfaces ; 16(3): 4117-4125, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194473

RESUMEN

3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA