Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1077: 355-368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357698

RESUMEN

Bone tissue engineering using titanium (Ti) implant and titanium dioxide (TiO2) with their modification is gaining increasing attention. Ti has been adopted as an implant material in dental and orthopedic fields due to its superior properties. However, it still requires modification in order to achieve robust osteointegration between the Ti implant and surrounding bone. To modify the Ti implant, numerous methods have been introduced to fabricate porous implant surfaces with a variety of coating materials. Among these, plasma spraying of hydroxyapatite (HA) has been the most commonly used with commercial success. Meanwhile, TiO2 nanotubes have been actively studied as the coating material for implants, and promising results have been reported about improving osteogenic activity around implants recently. Also porous three-dimensional constructs based on TiO2 have been proposed as scaffolding material with high biocompatibility and osteoconductivity in large bone defects. However, the use of the TiO2 scaffolds in load-bearing environment is somewhat limited. In order to optimize the TiO2 scaffolds, studies have tried to combine various materials with TiO2 scaffolds including drug, mesenchymal stem cells, Al2O3-SiO2 solid and HA. This article will shortly introduce the properties of Ti and Ti-based implants with their modification, and review the progress of bone tissue engineering using the TiO2 nanotubes and scaffolds.


Asunto(s)
Huesos , Prótesis e Implantes , Ingeniería de Tejidos , Titanio , Óxido de Aluminio , Durapatita , Humanos , Dióxido de Silicio , Propiedades de Superficie
2.
J Vis Exp ; (136)2018 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-29939181

RESUMEN

Tendinopathy, a painful condition that develops in response to tendon degeneration, is on the rise in the developed world due to increasing physical activity and longer life expectancy. Despite its increasing prevalence, the underlying pathogenesis still remains unclear, and treatment is generally symptomatic. Recently, numerous therapeutic options, including growth factors, stem cells, and gene therapy, were investigated in hopes of enhancing the healing potency of the degenerative tendon. However, the majority of these research studies were conducted only on animal models or healthy human tenocytes. Despite some studies using pathological tenocytes, to the best of our knowledge there is currently no protocol describing how to obtain human degenerative tenocytes. The aim of this study is to describe a standard protocol for acquiring human degenerative tenocytes. Initially, the tendon tissue was harvested from a patient with lateral epicondylitis during surgery. Then biopsy samples were taken from the extensor carpi radialis brevis tendon corresponding to structural changes observed at the time of surgery. All of the harvested tendons appeared to be dull, gray, friable, and edematous, which made them visually distinct from the healthy ones. Tenocytes were cultured and used for experiments. Meanwhile, half of the harvested tissues were analyzed histologically, and it was shown that they shared the same key features of tendinopathy (angiofibroblastic dysplasia or hyperplasia). A secondary analysis by immunocytochemistry confirmed that the cultured cells were tenocytes with the majority of the cells having positive stains for mohawk and tenomodulin proteins. The qualities of the degenerative nature of tenocytes were then determined by comparing the cells with the healthy control using a proliferation assay or qRT-PCR. The degenerative tenocyte displayed a higher proliferation rate and similar gene expression patterns of tendinopathy that matched previous reports. Overall, this new protocol might provide a useful tool for future studies of tendinopathy.


Asunto(s)
Tendinopatía/terapia , Tendones/patología , Tenocitos/metabolismo , Animales , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA