Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671512

RESUMEN

The electronic structures and transition properties of three types of triangle MoS2 clusters, A (Mo edge passivated with two S atoms), B (Mo edge passivated with one S atom), and C (S edge) have been explored using quantum chemistry methods. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of B and C is larger than that of A, due to the absence of the dangling of edge S atoms. The frontier orbitals (FMOs) of A can be divided into two categories, edge states from S3p at the edge and hybrid states of Mo4d and S3p covering the whole cluster. Due to edge/corner states appearing in the FMOs of triangle MoS2 clusters, their absorption spectra show unique characteristics along with the edge structure and size.


Asunto(s)
Teoría Funcional de la Densidad , Disulfuros/química , Molibdeno/química , Electrónica , Modelos Moleculares , Tamaño de la Partícula , Propiedades de Superficie
2.
Materials (Basel) ; 17(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255513

RESUMEN

Resin-based dental materials have been one of the ideal choices among various materials in the treatment of dental caries. However, resin-based dental materials still have some drawbacks, such as the lack of inherent antibacterial activity. Extensive research has been conducted on the use of novel quaternary ammonium monomers (QAMs) to impart antibacterial activity to dental materials. This review provides a comprehensive overview of the recent advances in quaternary ammonium monomers (QAMs) for dental applications. The current progress and limitations of QAMs are discussed based on the evolution of their structures. The functional diversification and enhancement of QAMs are presented. QAMs have the potential to provide long-term antibacterial activity in dental resin composites, thereby prolonging their service life. However, there is a need to balance antibacterial performance with other material properties and the potential impact on the oral microbiome and general health. Finally, the necessity for further scientific progress in the development of novel quaternary ammonium monomers and the optimization of dental resin formulations is emphasized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA