Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Plant Biol ; 21(1): 514, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736393

RESUMEN

BACKGROUND: Coleorhiza hairs, are sheath-like outgrowth organs in the seeds of Poaceae family that look like root hair but develop from the coleorhiza epidermal cells during seed imbibition. The major role of coleorhiza hair in seed germination involves facilitating water uptake and nutrient supply for seed germination. However, molecular basis of coleorhiza hair development and underlying genes and metabolic pathways during seed germination are largely unknown and need to be established. RESULTS: In this study, a comparative transcriptome analysis of coleorhiza hairs from japonica and indica rice suggested that DEGs in embryo samples from seeds with embryo in air (EIA) as compared to embryo from seeds completely covered by water (CBW) were enriched in water deprivation, abscisic acid (ABA) and auxin metabolism, carbohydrate catabolism and phosphorus metabolism in coleorhiza hairs in both cultivars. Up-regulation of key metabolic genes in ABA, auxin and dehydrin and aquaporin genes may help maintain the basic development of coleorhiza hair in japonica and indica in EIA samples during both early and late stages. Additionally, DEGs involved in glutathione metabolism and carbon metabolism are upregulated while DEGs involved in amino acid and nucleotide sugar metabolism are downregulated in EIA suggesting induction of oxidative stress-alleviating genes and less priority to primary metabolism. CONCLUSIONS: Taken together, results in this study could provide novel aspects about the molecular signaling that could be involved in coleorhiza hair development in different types of rice cultivars during seed germination and may give some hints for breeders to improve seed germination efficiency under moderate drought conditions.


Asunto(s)
Oryza/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/fisiología , Ácidos Indolacéticos/metabolismo , Oryza/genética , Transcriptoma/genética
2.
Plant Physiol ; 182(3): 1510-1526, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31857423

RESUMEN

Rice (Oryza sativa) molecular breeding has gained considerable attention in recent years, but inaccurate genome annotation hampers its progress and functional studies of the rice genome. In this study, we applied single-molecule long-read RNA sequencing (lrRNA_seq)-based proteogenomics to reveal the complexity of the rice transcriptome and its coding abilities. Surprisingly, approximately 60% of loci identified by lrRNA_seq are associated with natural antisense transcripts (NATs). The high-density genomic arrangement of NAT genes suggests their potential roles in the multifaceted control of gene expression. In addition, a large number of fusion and intergenic transcripts have been observed. Furthermore, 906,456 transcript isoforms were identified, and 72.9% of the genes can generate splicing isoforms. A total of 706,075 posttranscriptional events were subsequently categorized into 10 subtypes, demonstrating the interdependence of posttranscriptional mechanisms that contribute to transcriptome diversity. Parallel short-read RNA sequencing indicated that lrRNA_seq has a superior capacity for the identification of longer transcripts. In addition, over 190,000 unique peptides belonging to 9,706 proteoforms/protein groups were identified, expanding the diversity of the rice proteome. Our findings indicate that the genome organization, transcriptome diversity, and coding potential of the rice transcriptome are far more complex than previously anticipated.


Asunto(s)
Oryza/genética , Oryza/metabolismo , Proteogenómica/métodos , Proteoma/metabolismo , ARN sin Sentido/genética , Análisis de Secuencia de ARN , Transcriptoma
3.
Plant J ; 94(4): 612-625, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29495079

RESUMEN

Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.


Asunto(s)
Adaptación Fisiológica , Calcineurina/metabolismo , Calcio/metabolismo , Oryza/genética , Regiones Promotoras Genéticas/genética , Calcineurina/genética , Ecotipo , Inundaciones , Variación Genética , Germinación , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Semillas/genética , Semillas/fisiología , Especificidad de la Especie , Estrés Fisiológico
4.
BMC Plant Biol ; 19(1): 445, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651235

RESUMEN

BACKGROUND: Apple is one of the most popular fruit crops world-wide and its skin color is an important quality consideration essential for commercial value. However, the strategy on genetic breeding for red skin apple and the genetic basis of skin color differentiation is very limited and still largely unknown. RESULTS: Here, we reported a bud sport mutant of Fuji apple with red skin color and enhanced anthocyanins accumulation. Quantitative SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) proteomics investigations revealed proteome changes in the apple red skin bud mutation and a total of 451 differentially expressed proteins were identified in apple skin. The mutant showed significantly increased expression levels of photosynthesis-related proteins, stress-related proteins as well as anthocyanins biosynthesis pathway. On the other hand, substantial downregulation of mitogen-activated protein kinase 4 (MAPK4) and mevalonate kinase (MVK) were detected, indicating a promising role for the red skin color development in the mutant. Furthermore, we also hypothesize that a post-transcriptional regulation of the skin color formation occurs in the mutant through the advanced SWATH-MS analysis. CONCLUSION: Our work provides important information on the application of proteomic methods for analysing proteomes changes in Fuji apple and highlights a clade of regulatory proteins potentially contributing for the molecular breeding of fruit skin color.


Asunto(s)
Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/fisiología , Proteínas de Plantas/metabolismo , Proteoma , Frutas/genética , Frutas/inmunología , Frutas/metabolismo , Frutas/fisiología , Malus/genética , Espectrometría de Masas , Mutación , Fotosíntesis , Pigmentación , Fitomejoramiento , Proteínas de Plantas/genética , Proteómica
5.
J Exp Bot ; 70(5): 1597-1611, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30690492

RESUMEN

Moderate soil drying imposed at the post-anthesis stage significantly increases starch accumulation in inferior grains of rice, but how this process is regulated at the level of gene expression remains unclear. In this study, we applied moderate drying (MD) treatments to the soil at the post-anthesis stage and followed the dynamics of the conversion process of soluble sugars to starch in inferior grains using RNA-seq analysis. An elevated level of ABA induced by MD was consistently associated with down-regulation of ABA8ox2, suggesting that lower expression of this gene may be responsible for the higher ABA content, potentially resulting in better filling in inferior grains. In addition, MD treatments up-regulated genes encoding five key enzymes involved sucrose-to-starch conversion and increased the activities of enzymes responsible for soluble-sugar reduction and starch accumulation in inferior grains. Differentially expressed transcription factors, including NAC, GATA, WRKY, and M-type MADS, were predicted to interact with other proteins in mediating filling of inferior grains as a response to MD. Transient expression analysis showed that NAC activated WAXY expression by binding to its promoter, indicating that NAC played a key role in starch synthesis of inferior grains under MD treatment. Our results provide new insights into the molecular mechanisms that regulate grain filling in inferior grains of rice under moderate soil drying.


Asunto(s)
Desecación , Grano Comestible/crecimiento & desarrollo , Oryza/fisiología , Suelo/química , Transcriptoma , Grano Comestible/genética
6.
J Exp Bot ; 70(3): 817-833, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30535157

RESUMEN

Post-transcriptional mechanisms (PTMs), including alternative splicing (AS) and alternative translation initiation (ATI), may explain the diversity of proteins involved in plant development and stress responses. Transcriptional regulation is important during the hypoxic germination of rice seeds, but the potential roles of PTMs in this process have not been characterized. We used a combination of proteomics and RNA sequencing to discover how AS and ATI contribute to plant responses to hypoxia. In total, 10 253 intron-containing genes were identified. Of these, ~1741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds compared with controls. Over 95% of these were not present in the list of differentially expressed genes. In particular, regulatory pathways such as the spliceosome, ribosome, endoplasmic reticulum protein processing and export, proteasome, phagosome, oxidative phosphorylation, and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of transcriptional regulation. Considerable AS changes were identified, including the preferential usage of some non-conventional splice sites and enrichment of splicing factors in the DAS data sets. Taken together, these results not only demonstrate that AS and ATI function during hypoxic germination but they have also allowed the identification of numerous novel proteins/peptides produced via ATI.


Asunto(s)
Empalme Alternativo , Germinación/genética , Oryza/crecimiento & desarrollo , Biosíntesis de Proteínas , Anaerobiosis , Oryza/genética , Oxígeno/metabolismo , Semillas/crecimiento & desarrollo , Semillas/fisiología
7.
Plant J ; 91(3): 518-533, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28407323

RESUMEN

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteogenómica/métodos , Plantones/efectos de los fármacos , Plantones/metabolismo , Empalme Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Exones/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/efectos de los fármacos , Genoma de Planta/genética , Intrones/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Plantones/genética
8.
Plant Cell Physiol ; 58(8): 1391-1404, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575477

RESUMEN

Carbon reserves in rice straw (stem and sheath) before flowering contribute to a significant portion of grain filling. However, the molecular mechanism of carbon reserve remobilization from straw to grains remains unclear. In this study, super rice LYP9 and conventional rice 9311 showed different carbon reserve remobilization behaviors. The transcriptomic profiles of straws of LYP9 and 9311 were analyzed at three stages of grain filling. Among the differentially expressed genes (DGs), 5,733 genes were uniquely up- or down-regulated at 30 days after anthesis (DAA) between LYP9 and 9311 in comparison with 681 at 10 DAA and 495 at 20 DAA, suggesting that the gene expression profile of LYP9 was very different from that of 9311 at the late stage of grain filling. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) classification of DGs both showed that the carbohydrate catabolic pathway, plant hormone signal transduction and photosynthesis pathway were enriched in DGs, suggesting their roles in carbon reserve remobilization, which explains to a certain extent the difference in non-structural carbohydrate content, photosynthesis and ABA content between the two cultivars during grain filling. Further comparative analysis and confirmation by quantitative real-time PCR and enzyme assays suggest that genes involved in trehalose synthesis (trehalose-phosphate phosphatase and trehalose 6-phosphate synthase/phosphatase), starch degradation (ß-amylase) and sucrose synthesis (sucrose-phosphate synthase and sucrose synthase) were important for carbon reserve remobilization, whereas ABA content was determined by the counteraction of NCED1 and ABA8ox1 genes. The higher expression level of all these genes and ABA content in 9311 resulted in better efficiency of carbon reserve remobilization in 9311 than in LYP9.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Tallos de la Planta/metabolismo , Semillas/crecimiento & desarrollo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Ontología de Genes , Oryza/genética , Oryza/crecimiento & desarrollo , Tallos de la Planta/genética , Semillas/genética , Análisis de Secuencia de ARN , Almidón/genética , Almidón/metabolismo , Sacarosa/metabolismo
9.
Rice (N Y) ; 12(1): 79, 2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31707526

RESUMEN

BACKGROUND: Proline (Pro) and γ-aminobutyric acid (GABA) play important roles in plant development and stress tolerance. However, the molecular components responsible for the transport of these molecules in rice remain largely unknown. RESULTS: Here we identified OsProT1 and OsProT3 as functional transporters for Pro and GABA. Transient expression of eGFP-OsProTs in plant protoplasts revealed that both OsProT1 and OsProT3 are localized to the plasma membrane. Ectopic expression in a yeast mutant demonstrated that both OsProT1 and OsProT3 specifically mediate transport of Pro and GABA with affinity for Pro in the low affinity range. qRT-PCR analyses suggested that OsProT1 was preferentially expressed in leaf sheathes during vegetative growth, while OsProT3 exhibited relatively high expression levels in several tissues, including nodes, panicles and roots. Interestingly, both OsProT1 and OsProT3 were induced by cadmium stress in rice shoots. CONCLUSIONS: Our results suggested that plasma membrane-localized OsProT1 and OsProT3 efficiently transport Pro and GABA when ectopically expressed in yeast and appear to be involved in various physiological processes, including adaption to cadmium stress in rice plants.

10.
Plant Methods ; 14: 69, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123314

RESUMEN

BACKGROUND: The next-generation sequencing (NGS) technology has greatly facilitated genomic and transcriptomic studies, contributing significantly in expanding the current knowledge on genome and transcriptome. However, the continually evolving variety of sequencing platforms, protocols and analytical pipelines has led the research community to focus on cross-platform evaluation and standardization. As a NGS pioneer in China, the Beijing Genomics Institute (BGI) has announced its own NGS platform designated as BGISEQ-500, since 2016. The capability of this platform in large-scale DNA sequencing and small RNA analysis has been already evaluated. However, the comparative performance of BGISEQ-500 platform in transcriptome analysis remains yet to be elucidated. The Illumina series, a leading sequencing platform in China's sequencing market, would be a preferable reference to evaluate new platforms. METHODS: To this end, we describe a cross-platform comparative study between BGISEQ-500 and Illumina HiSeq4000 for analysis of Arabidopsis thaliana WT (Col 0) transcriptome. The key parameters in RNA sequencing and transcriptomic data processing were assessed in biological replicate experiments, using aforesaid platforms. RESULTS: The results from the two platforms BGISEQ-500 and Illumina HiSeq4000 shared high concordance in both inter- (correlation, 0.88-0.93) and intra-platform (correlation, 0.95-0.98) comparison for gene quantification, identification of differentially expressed genes and alternative splicing events. However, the two platforms yielded highly variable interpretation results for single nucleotide polymorphism and insertion-deletion analysis. CONCLUSION: The present case study provides a comprehensive reference dataset to validate the capability of BGISEQ-500 enabling it to be established as a competitive and reliable platform in plant transcriptome analysis.

11.
Front Plant Sci ; 8: 350, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28392792

RESUMEN

Glycoside hydrolases Family 1 (GH1) comprises enzymes that can hydrolyze ß-O-glycosidic bond from a carbohydrate moiety. The plant GH1 hydrolases participate in a number of developmental processes and stress responses, including cell wall modification, plant hormone activation or deactivation and herbivore resistance. A large number of members has been observed in this family, suggesting their potential redundant functions in various biological processes. In this study, we have used 304 sequences of plant GH1 hydrolases to study the evolution of this gene family in plant lineage. Gene duplication was found to be a common phenomenon in this gene family. Although many members of GH1 hydrolases showed a high degree of similarity in Arabidopsis and rice, they showed substantial tissue specificity and differential responses to various stress treatments. This differential regulation implies each enzyme may play a distinct role in plants. Furthermore, some of salt-responsive Arabidopsis GH1 hydrolases were selected to test their genetic involvement in salt responses. The knockout mutants of AtBGLU1 and AtBGLU19 were observed to be less-sensitive during NaCl treatment in comparison to the wild type seedlings, indicating their participation in salt stress response. In summary, Arabidopsis and rice GH1 glycoside hydrolases showed distinct features in their evolutionary path, transcriptional regulation and genetic functions.

12.
Front Plant Sci ; 7: 1926, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066479

RESUMEN

Modern rice cultivars have large panicle but their yield potential is often not fully achieved due to poor grain-filling of late-flowering inferior spikelets (IS). Our earlier work suggested a broad transcriptional reprogramming during grain filling and showed a difference in gene expression between IS and earlier-flowering superior spikelets (SS). However, the links between the abundances of transcripts and their corresponding proteins are unclear. In this study, a SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) -based quantitative proteomic analysis has been applied to investigate SS and IS proteomes. A total of 304 proteins of widely differing functionality were observed to be differentially expressed between IS and SS. Detailed gene ontology analysis indicated that several biological processes including photosynthesis, protein metabolism, and energy metabolism are differentially regulated. Further correlation analysis revealed that abundances of most of the differentially expressed proteins are not correlated to the respective transcript levels, indicating that an extra layer of gene regulation which may exist during rice grain filling. Our findings raised an intriguing possibility that these candidate proteins may be crucial in determining the poor grain-filling of IS. Therefore, we hypothesize that the regulation of proteome changes not only occurs at the transcriptional, but also at the post-transcriptional level, during grain filling in rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA