RESUMEN
Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.
Asunto(s)
Exosomas , Ferroptosis , Lesión Pulmonar , Humanos , Muerte Celular , NADRESUMEN
Cartilage is an alymphatic, avascular and non-innervated tissue. Lack of potential regenerative capacity to reconstruct chondral defect has accelerated investigation and development of new strategy for cartilage repair. We prepared a manganese ion-incorporated natupolymer-based scaffold with chitosan-gelatin by freeze-drying procedure. The scaffold was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy dispersive spectroscopy, compressive testing, and analysis of porosity and flexibility. Live/dead assay confirmed the good cytocompatibility of prepared scaffold on rat articular chondrocytes after 10 days and 4 weeks of culture. The manganese-loaded composite scaffold upregulated the expression of chondrogenic-related markers (Sox9, integrin, and Col II) in chondrocytes. Western blot analysis of proteins extracted from chondrocytes grown on scaffolds indicated the signaling pathways of p-Akt and p-ERK1/2 played a key role. Histological analysis following implantation of current composite scaffold loaded with chondrocytes into a rat articular cartilage defect model showed that the scaffolds promoted the formation of collagen II and cartilage repair. These findings suggested the potential of manganese-loaded scaffold to promote new cartilage formation and a promising strategy for articular cartilage engineering application.
Asunto(s)
Cartílago Articular , Quitosano , Animales , Condrocitos , Colágeno/química , Gelatina , Integrinas , Manganeso , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.
Asunto(s)
Bacterias/metabolismo , Estiércol/análisis , Metano/análisis , Eliminación de Residuos/métodos , Residuos/análisis , Anaerobiosis , Animales , Biodegradación Ambiental , Biocombustibles/análisis , Reactores Biológicos , Pollos , Digestión , Estiércol/microbiología , Metano/metabolismo , Eliminación de Residuos/instrumentaciónRESUMEN
Ulcerative colitis (UC) is a chronic gastrointestinal disease that can be managed with 5-aminosalicylic acid (5-ASA), the standard treatment for UC. However, the effectiveness of 5-ASA is not always optimal. Our study revealed that despite 5-ASA treatment, cells continued to experience excessive ferroptosis, which may hinder mucosal healing in UC and limit the success of this treatment approach in achieving disease remission. We found that combining 5-ASA with the ferroptosis inhibitor Fer-1 led to a significant inhibition of ferroptosis in macrophages present in the colon tissue, along with an increase in the proportion of M2 macrophages, suggesting that targeting ferroptosis in M2 macrophages could be a potential therapeutic strategy for alleviating UC. Our study also demonstrated that M2 macrophages are more susceptible to ferroptosis compared to M1 macrophages, and this susceptibility is associated with the activated arachidonic acid (AA) metabolism pathway mediated by ERK-cPLA2-ACSL4. Additionally, we found that the expression of cPLA2 gene pla2g4a was increased in the colon of UC patients compared to healthy controls. Furthermore, targeted metabolomics analysis revealed that the combination treatment group, as opposed to the 5-ASA treatment group, exhibited the ability to modulate AA metabolism. Overall, our findings emphasize the importance of addressing macrophage ferroptosis in order to enhance macrophage anti-inflammation, improve mucosal healing, and achieve better therapeutic outcomes for patients with UC.
Asunto(s)
Colitis Ulcerosa , Ferroptosis , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Ferroptosis/genética , Metabolismo de los Lípidos , Macrófagos , MesalaminaRESUMEN
Emerging biologics and small-molecule drugs have changed the clinical status quo of inflammatory bowel disease (IBD). However, current treatments remain at a standstill in terms of response and remission in many cases. Accumulating evidence indicates that dual-targeted therapy (DTT) could be promising in overcoming the existing ceiling of IBD treatment. However, data on the efficacy and safety of DTT on Crohn's disease and ulcerative colitis are still limited or insufficient. Moreover, there is a lack of studies delineating the mechanisms of DTT. Given that various targeted drugs have different targets among the extensive redundant inflammatory networks, DTT could result in various outcomes. In this review, we have summarized the current data on the safety, effectiveness, and clinical development status of novel targeted drugs related to refractory IBD, and have explored the mechanism of action of therapy. We have categorized therapeutic agents into "Therapeutic Agents Targeting Cellular Signaling Pathways" and "Therapeutic Agents Targeting Leukocyte Trafficking" based on the different therapeutic targets, and also by classifying therapeutic agents targeting the cellular signaling pathways into "JAK-dependent" and "JAK-independent," and placed the existing drug combinations into 3 categories based on their mechanisms, namely, overlapping, synergistic, and complementary effects. Lastly, we have proposed the possible mechanisms of DTT to conceive a theoretical framework for clinical decision-making and further drug development and research from an IBD standpoint.
Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Colitis Ulcerosa/tratamiento farmacológico , Leucocitos/metabolismo , Quinasas JanusRESUMEN
Background: Primary Sjogren Syndrome (pSS) is an autoimmune disease characterized by immune cell infiltration. While the presence of follicular T helper (Tfh) cells in the glandular microenvironment has been observed, their biological functions and clinical significance remain poorly understood. Methods: We enrolled a total of 106 patients with pSS and 46 patients without pSS for this study. Clinical data and labial salivary gland (LSG) biopsies were collected from all participants. Histological staining was performed to assess the distribution of Tfh cells and B cells. Transcriptome analysis using RNA-sequencing (RNA-seq) was conducted on 56 patients with pSS and 26 patients without pSS to uncover the underlying molecular mechanisms of Tfh cells. To categorize patients, we employed the single-sample gene set enrichment analysis (ssGSEA) algorithm, dividing them into low- and high-Tfh groups. We then utilized gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution tools to explore functional and immune infiltration differences between the low- and high-Tfh groups. Results: Patients with pSS had a higher positive rate of the antinuclear antibody (ANA), anti-Ro52, anti-SSA, anti-SSB and hypergammaglobulinaemia and higher levels of serum IgG compared to the non-pSS. Histopathologic analyses revealed the presence of Tfh cells (CD4+CXCR5+ICOS+) in germinal centers (GC) within the labial glands of pSS patients. GSEA, WGCNA, and correlation analysis indicated that the high-Tfh group was associated with an immune response related to virus-mediated IFN response and metabolic processes, primarily characterized by hypoxia, elevated glycolysis, and oxidative phosphorylation levels. In pSS, most immune cell types exhibited significantly higher infiltration levels in the high-Tfh group compared to the low-Tfh group. Additionally, patients in the Tfh-high group demonstrated a higher positive rate of the ANA, rheumatoid factor (RF), and hypergammaglobulinaemia, as well as higher serum IgG levels. Conclusion: Our study suggests that Tfh cells may play a crucial role in the pathogenesis of pSS and could serve as potential therapeutic targets in pSS patients.
Asunto(s)
Síndrome de Sjögren , Transcriptoma , Humanos , Hipergammaglobulinemia , Síndrome de Sjögren/genética , Biología de Sistemas , Células T Auxiliares Foliculares , Anticuerpos Antinucleares , Inmunoglobulina GRESUMEN
Background: Primary Sjogren's syndrome (pSS) is a prototypical systemic autoimmune disease characterised by lymphocyte infiltration and immune-complex deposition in multiple organs. The specific distribution of immune cell populations and their relationship with mitochondria remain unknown. Methods: Histological analysis was performed to assess the specific distribution of innate and adaptive immune cell populations in labial salivary gland (LSG) samples from 30 patients with pSS and 13 patients with non-pSS. The ultrastructural morphometric features of mitochondria within immune cells were observed under the transmission electron microscope (TEM). RNA sequencing was performed on LSG samples from 40 patients with pSS and 7 non-pSS patients. The Single-sample Gene Set Enrichment Analysis (ssGSEA), ESTIMATE, and CIBERSORT algorithms and Pearson correlation coefficients were used to examine the relationship between mitochondria-related genes and immune infiltration. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify the mitochondria-specific genes and the related pathways based on the immune cell types. Results: HE staining revealed a massive infiltration of plasma cells with abundant immunoglobulin protein distributed around phenotypically normal-appearing acinar and ductal tissues of patients with pSS. Immunohistochemical analyses revealed that innate immune cells (macrophages, eosinophils and NK cells) were distributed throughout the glandular tissue. Dominant adaptive immune cell infiltration composed of B cells, CD4+T cells and CD8+ T cells or ectopic lymphoid follicle-like structures were observed in the LSGs of patients with pSS. TEM validated the swelling of mitochondria with disorganised cristae in some lymphocytes that had invaded the glandular tissue. Subsequently, bioinformatic analysis revealed that innate and adaptive immune cells were associated with different mitochondrial metabolism pathways. Mitochondrial electron transport and respiratory chain complexes in the glandular microenvironment were positively correlated with innate immune cells, whereas amino acid and nucleic acid metabolism were negatively correlated with adaptive immune cells. In addition, mitochondrial biogenesis and mitochondrial apoptosis in the glandular microenvironment were closely associated with adaptive immune cells. Conclusion: Innate and adaptive immune cells have distinct distribution profiles in the salivary gland tissues of patients with pSS and are associated with different mitochondrial metabolic pathways, which may contribute to disease progression.
Asunto(s)
Glándulas Salivales , Síndrome de Sjögren , Humanos , Linfocitos T CD8-positivos/metabolismo , Mitocondrias/metabolismo , MetabolomaRESUMEN
Aging-related salivary dysfunction typically causes reduced saliva volumes, which leads to debilitating consequences, even affecting patient quality of life. Understanding the respective clinicopathological characteristics and molecular mechanisms underlying salivary gland functioning during aging is vital for therapeutic purposes. Here, we provide a detailed atlas of the salivary gland microenvironment during aging, and we identified several phenotypes characteristic of aging salivary glands, including acini atrophy, increased inflammatory cells, altered immune responses, and accumulation of lysosomes and autophagosomes in aging cells, which may reflect progressive degeneration of salivary gland function. Furthermore, our analyses suggested significant enrichment of metabolic pathways in aging glands. Our results revealed complex cellular cross-talk among aging acinar cells, inflammatory factors, and immune responses. A natural aging animal model was established to verify these findings. This study provides mechanistic insights into age-related clinicopathogenesis, important implications for early diagnosis, and identification of new targets for improving salivary gland dysfunction.
RESUMEN
Hepatic fibrosis is the common pathway for most chronic liver diseases, characterized by excessive accumulation of extracellular matrix (ECM) proteins. It has been shown that fibrotic ECM significantly hindered passage of nanoparticles. Efforts have been made by decorating degrading enzymes on surfaces of nanosized delivery vehicles to improve drug delivery. However, these strategies are restricted by limiting shelf-life. Inspired by the application of sonoporation in assisting drug delivery through blood-brain barrier and tumor tissues, we investigated whether sonoporation can be an alternative strategy in improving drug delivery for fibrotic diseases. Hydroxycamptothecin (HCPT), a potential drug in treating liver fibrosis, was selected as a model drug to evaluate the drug delivery efficiency and therapeutic effect among three delivery strategies, i.e., (1) injection solution, (2) delivery through liposomes, and (3) delivery via sonoporation. Our study showed that in addition to the improved drug delivery efficiency, the combination of HCPT and sonoporation led to synergistic effect and the mechanisms were investigated. The treatment group of HCPT delivered with sonoporation achieved the most significant attenuation in liver fibrosis among the three delivery strategies.
Asunto(s)
Camptotecina , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Cirrosis Hepática , MicroburbujasRESUMEN
Combating the accumulated senescent cells and the healing of osteoporotic bone fractures in the older remains a significant challenge. Nicotinamide mononucleotide (NMN), a precursor of NAD+, is an excellent candidate for mitigating aging-related disorders. However, it is unknown if NMN can alleviate senescent cell induction and enhance osteoporotic bone fracture healing. Here we show that NMN treatment partially reverses the effects of tumor necrosis factor-alpha (TNF-α) on human primary osteoblasts (HOBs): senescent cell induction, diminished osteogenic differentiation ability, and intracellular NAD+ and NADH levels. Mechanistically, NMN restores the mitochondrial dysfunction in HOBs induced by TNF-α evidenced by increased mitochondrial membrane potential and reduced reactive oxidative species and mitochondrial mass. NMN also increases mitophagy activity by down-regulating P62 expression and up-regulating light chain 3B-II protein expression. In addition, the cell senescence protective effects of NMN on HOBs are mitigated by a mitophagy inhibitor (Bafilomycin A1). In vivo, NMN supplementation attenuates senescent cell induction in growth plates, partially prevents osteoporosis in an ovariectomized mouse model, and accelerates bone healing in osteoporotic mice. We conclude that NMN can be a novel and promising therapeutic candidate to enhance bone fracture healing capacity in the older.
Asunto(s)
Mononucleótido de Nicotinamida , Osteoporosis , Ratones , Humanos , Animales , Mononucleótido de Nicotinamida/farmacología , NAD/metabolismo , Osteogénesis , Factor de Necrosis Tumoral alfa , Osteoblastos/metabolismoRESUMEN
The intestinal microbiome plays an essential role in human health and disease status. So far, microbiota transplantation is considered a potential therapeutic approach for treating some chronic diseases, including inflammatory bowel disease (IBD). The diversity of gut microbiota is critical for maintaining resilience, and therefore, transplantation with numerous genetically diverse gut microbiota with metabolic flexibility and functional redundancy can effectively improve gut health than a single probiotic strain supplement. Studies have shown that natural fecal microbiota transplantation or washing microbiota transplantation can alleviate colitis and improve intestinal dysbiosis in IBD patients. However, unexpected adverse reactions caused by the complex and unclear composition of the flora limit its wider application. The evolving strain isolation technology and modifiable pre-existing strains are driving the development of microbiota transplantation. This review summarized the updating clinical and preclinical data of IBD treatments from fecal microbiota transplantation to washing microbiota transplantation, and then to artificial consortium transplantation. In addition, the factors considered for strain combination were reviewed. Furthermore, four types of artificial consortium transplant products were collected to analyze their combination and possible compatibility principles. The perspective on individualized microbiota transplantation was also discussed ultimately.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Enfermedad Crónica , Disbiosis/terapia , Trasplante de Microbiota Fecal , Humanos , Enfermedades Inflamatorias del Intestino/terapiaRESUMEN
Background: Primary Sjogren's syndrome (pSS) is a slowly progressive, inflammatory autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands. It becomes more recognized that morphology alterations of epithelial mitochondria are involved in altered cellular bioenergetics in pSS patients. The integrated analysis of the mitochondrial role in the pathogenesis and aberrant immune microenvironment in pSS remains unknown. Methods: The mitochondria-related genes and gene expression data were downloaded from the MitoMiner, MitoCarta, and NCBI GEO databases. We performed novel transcriptomic analysis and constructed a network between the mitochondrial function and immune microenvironment in pSS-salivary glands by computer-aided algorithms. Subsequently, real-time PCR was performed in clinical samples in order to validate the bioinformatics results. Histological staining and transmission electron microscopy (TEM) were further studied on labial salivary gland samples of non-pSS and pSS patients characterized for mitochondria-related phenotypic observation in the different stages of the disease. Results: The bioinformatic analysis revealed that the expression of several mitochondria-related genes was altered in pSS. Quantitative real-time PCR showed that four hub genes, CD38, CMPK2, TBC1D9, and PYCR1, were differentially expressed in the pSS clinical samples. These hub genes were associated with the degree of immune cell infiltration in salivary glands, the mitochondrial respiratory chain complexes, mitochondrial metabolic pathway in gluconeogenesis, TCA cycle, and pyruvate/ketone/lipid/amino acid metabolism in pSS. Clinical data revealed that the gene expression of fission (Fis1, DRP1, and MFF) and fusion (MFN1, MFN2, and OPA1) was downregulated in pSS samples, consistent with the results from the public validation database. As the disease progressed, cytochrome c and Bcl-2 proteins were regionally distributed in salivary glands from pSS patients. TEM revealed cytoplasmic lipid droplets and progressively swollen mitochondria in salivary epithelial cells. Conclusion: Our study revealed cross talk between mitochondrial dysfunction and the immune microenvironment in salivary glands of pSS patients, which may provide important insights into SS clinical management based on modulation of mitochondrial function.
Asunto(s)
Síndrome de Sjögren , Perfilación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Glándulas Salivales , Glándulas Salivales Menores/metabolismoRESUMEN
Both colorectal and gastric cancer are lethal solid-tumor malignancies, leading to the majority of cancer-associated deaths worldwide. Although colorectal cancer (CRC) and gastric cancer (GC) share many similarities, the prognosis and drug response of CRC and GC are different. However, determinants for such differences have not been elucidated. To avoid genetic background variance, we performed multi-omics analysis, including single-cell RNA sequencing, whole-exome sequencing, and microbiome sequencing, to dissect the tumor immune signature of synchronous primary tumors of GC and CRC. We found that cellular components of juxta-tumoral sites were quite similar, while tumoral cellular components were specific to the tumoral sites. In addition, the mutational landscape and microbiome contributed to the distinct TME cellular components. Overall, we found that different prognoses and drug responses of GC and CRC were mainly due to the distinct TME determined by mutational landscape and microbiome components.
Asunto(s)
Neoplasias Colorrectales , Microbiota , Neoplasias Primarias Múltiples , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Mutación , Neoplasias Colorrectales/genéticaRESUMEN
While bacteria have been primarily studied for phosphorus (P) removal in wastewater treatment, fungi and their ability to accumulate intracellular polyphosphate are less investigated. P-accumulating fungal strains were screened from soybean plants and surrounding soil by flask cultivation with potato dextrose broth and KH2PO4 in this study. Mucor circinelloides was selected for its high efficiency in P removal efficiency and high cellular P content. Neisser staining and growth-curve analysis confirmed that M. circinelloides stored polyphosphate intracellularly by luxury phosphate uptake. The effect of culture medium compositions on P removal efficiency and cellular P content was also investigated. Monosaccharides (such as glucose and fructose) and organic nitrogen (N, such as urea, and peptone) promoted fungi growth and P accumulation. M. circinelloides also preferred organic phosphates. When glucose, urea, and phytic acid sodium salt were used as the carbon, N, and P source, respectively, the maximum utilization efficiency was 40.1% for P and 7.08% for cellular P content. In addition, the potential of M. circinelloides for P removal from waste streams was investigated. Compared with the non-inoculated control culture, inoculation with M. circinelloides improved the soluble P removal in treating wastewater centrate, screened manure, and digested manure.
Asunto(s)
Mucor/crecimiento & desarrollo , Fosfatos/metabolismo , Fósforo/metabolismo , Aguas Residuales/microbiología , Purificación del Agua/métodosRESUMEN
The syntheses of four D-myo-inositol 1,4,5-trisphosphate (InsP(3)) derivatives, incorporating phosphate bioisosteres at the 5-position, are reported. The methyl phosphate ester and sulfate derivatives retain InsP(3) receptor (InsP(3)R) agonist activity; the compounds that possess a methylphosphonate or a carboxymethyl moiety are InsP(3)R antagonists.