Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 234(3): 902-917, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167117

RESUMEN

Tea trichomes synthesize numerous specialized metabolites to protect plants from environmental stresses and contribute to tea flavours, but little is known about the regulation of trichome development. Here, we showed that CsMYB1 is involved in the regulation of trichome formation and galloylated cis-catechins biosynthesis in tea plants. The variations in CsMYB1 expression levels are closely correlated with trichome indexes and galloylated cis-catechins contents in tea plant populations. Genome resequencing showed that CsMYB1 may be selected in modern tea cultivars, since a 192-bp insertion in CsMYB1 promoter was found exclusively in modern tea cultivars but not in the glabrous wild tea Camellia taliensis. Several enhancers in the 192-bp insertion increased CsMYB1 transcription in modern tea cultivars that coincided with their higher galloylated cis-catechins contents and trichome indexes. Biochemical analyses and transgenic data showed that CsMYB1 interacted with CsGL3 and CsWD40 and formed a MYB-bHLH-WD40 (MBW) transcriptional complex to activate the trichome regulator genes CsGL2 and CsCPC, and the galloylated cis-catechins biosynthesis genes anthocyanidin reductase and serine carboxypeptidase-like 1A. CsMYB1 integratively regulated trichome formation and galloylated cis-catechins biosynthesis. Results suggest that CsMYB1, trichome and galloylated cis-catechins are coincidently selected during tea domestication by harsh environments for improved adaption and by breeders for better tea flavours.


Asunto(s)
Catequina , Tricomas , Catequina/metabolismo , Domesticación , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , , Tricomas/metabolismo
3.
Front Plant Sci ; 13: 1016692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247612

RESUMEN

The flowers of tea plants (Camellia sinensis), as well as tea leaves, contain abundant secondary metabolites and are big potential resources for the extraction of bioactive compounds or preparation of functional foods. However, little is known about the biosynthesis and transcriptional regulation mechanisms of those metabolites in tea flowers, such as terpenoid, flavonol, catechins, caffeine, and theanine. This study finely integrated target and nontarget metabolism analyses to explore the metabolic feature of developing tea flowers. Tea flowers accumulated more abundant terpenoid compounds than young leaves. The transcriptome data of developing flowers and leaves showed that a higher expression level of later genes of terpenoid biosynthesis pathway, such as Terpene synthases gene family, in tea flowers was the candidate reason of the more abundant terpenoid compounds than in tea leaves. Differently, even though flavonol and catechin profiling between tea flowers and leaves was similar, the gene family members of flavonoid biosynthesis were selectively expressed by tea flowers and tea leaves. Transcriptome and phylogenetic analyses indicated that the regulatory mechanism of flavonol biosynthesis was perhaps different between tea flowers and leaves. However, the regulatory mechanism of catechin biosynthesis was perhaps similar between tea flowers and leaves. This study not only provides a global vision of metabolism and transcriptome in tea flowers but also uncovered the different mechanisms of biosynthesis and transcriptional regulation of those important compounds.

4.
J Agric Food Chem ; 70(10): 3239-3251, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35245048

RESUMEN

Caffeine is a characteristic bioactive compound in tea and coffee plants, which is synthesized and accumulated extensively in leaves and seeds. However, little is known about the regulatory mechanism of caffeine synthesis in plants. This study compared the caffeine metabolite between tea and coffee plants. We found that tea leaves contained significantly higher caffeine than coffee leaves, which is perhaps due to more members of N-methyltransferase (NMT) genes as well as higher expression levels in tea plants. Substantial numbers of transcription factors were predicted to be involved in caffeine biosynthesis regulation, combining weighted gene co-expression network analysis and the cis-element of NMT promoter analysis in tea and coffee plants. Furthermore, analysis of the transcription factors from the caffeine-related modules suggested that the regulatory mechanism of caffeine biosynthesis was probably partly conservative in tea and coffee plants. This study provides an essential resource for the regulatory mechanism of caffeine biosynthesis in plants.


Asunto(s)
Cafeína , Camellia sinensis , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Café/metabolismo , Perfilación de la Expresión Génica , Té/metabolismo
5.
Arch Oral Biol ; 68: 1-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27035752

RESUMEN

OBJECTIVE: Endogenous hydrogen sulfide (H2S) has recently emerged as an important intracellular gaseous signaling molecule within cellular systems. Endogenous H2S is synthesized from l-cysteine via cystathionine ß-synthase and cystathionine γ-lyase and it regulates multiple signaling pathways in mammalian cells. Indeed, aberrant H2S levels have been linked to defects in bone formation in experimental mice. The aim of this study was to examine the potential production mechanism and function of endogenous H2S within primary human periodontal ligament cells (PDLCs). DESIGN: Primary human PDLCs were obtained from donor molars with volunteer permission. Immunofluorescent labeling determined expression of the H2S synthetase enzymes. These enzymes were inhibited with D,L-propargylglycine or hydroxylamine to examine the effects of H2S signaling upon the osteogenic differentiation of PDLCs. Gene and protein expression levels of osteogenic markers in conjunction with ALP staining and activity and alizarin red S staining of calcium deposition were used to assay the progression of osteogenesis under different treatment conditions. Cultures were exposed to Wnt3a treatment to assess downstream signaling mechanisms. RESULTS: In this study, we show that H2S is produced by human PDLCs via the cystathionine ß-synthase/cystathionine γ-lyase pathway to promote their osteogenic differentiation. These levels must be carefully maintained as excessive or deficient H2S levels temper the observed osteogenic effect by inhibiting Wnt/ß-catenin signaling. CONCLUSIONS: These results demonstrate that optimal concentrations of endogenous H2S must be maintained within PDLCs to promote osteogenic differentiation by activating the Wnt/ß-catenin signaling cascade.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal/metabolismo , Adolescente , Adulto , Alquinos/antagonistas & inhibidores , Western Blotting , Diferenciación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Femenino , Expresión Génica , Glicina/análogos & derivados , Glicina/antagonistas & inhibidores , Humanos , Hidroxilamina/antagonistas & inhibidores , Masculino , Diente Molar , Osteogénesis/genética , Ligamento Periodontal/citología , Vía de Señalización Wnt , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA