Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 17(2): e3000136, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30726238

RESUMEN

Endosymbiosis has driven major molecular and cellular innovations. Plasmodium spp. parasites that cause malaria contain an essential, non-photosynthetic plastid-the apicoplast-which originated from a secondary (eukaryote-eukaryote) endosymbiosis. To discover organellar pathways with evolutionary and biomedical significance, we performed a mutagenesis screen for essential genes required for apicoplast biogenesis in Plasmodium falciparum. Apicoplast(-) mutants were isolated using a chemical rescue that permits conditional disruption of the apicoplast and a new fluorescent reporter for organelle loss. Five candidate genes were validated (out of 12 identified), including a triosephosphate isomerase (TIM)-barrel protein that likely derived from a core metabolic enzyme but evolved a new activity. Our results demonstrate, to our knowledge, the first forward genetic screen to assign essential cellular functions to unannotated P. falciparum genes. A putative TIM-barrel enzyme and other newly identified apicoplast biogenesis proteins open opportunities to discover new mechanisms of organelle biogenesis, molecular evolution underlying eukaryotic diversity, and drug targets against multiple parasitic diseases.


Asunto(s)
Apicoplastos/genética , Genes Esenciales , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Triosa-Fosfato Isomerasa/genética , Apicoplastos/metabolismo , Sistemas CRISPR-Cas , Eritrocitos/parasitología , Ontología de Genes , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metaloproteasas/genética , Metaloproteasas/metabolismo , Anotación de Secuencia Molecular , Mutagénesis , Biogénesis de Organelos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Triosa-Fosfato Isomerasa/metabolismo , Secuenciación Completa del Genoma , Proteína Fluorescente Roja
2.
PLoS Biol ; 16(9): e2005895, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30212465

RESUMEN

Malaria parasites (Plasmodium spp.) and related apicomplexan pathogens contain a nonphotosynthetic plastid called the apicoplast. Derived from an unusual secondary eukaryote-eukaryote endosymbiosis, the apicoplast is a fascinating organelle whose function and biogenesis rely on a complex amalgamation of bacterial and algal pathways. Because these pathways are distinct from the human host, the apicoplast is an excellent source of novel antimalarial targets. Despite its biomedical importance and evolutionary significance, the absence of a reliable apicoplast proteome has limited most studies to the handful of pathways identified by homology to bacteria or primary chloroplasts, precluding our ability to study the most novel apicoplast pathways. Here, we combine proximity biotinylation-based proteomics (BioID) and a new machine learning algorithm to generate a high-confidence apicoplast proteome consisting of 346 proteins. Critically, the high accuracy of this proteome significantly outperforms previous prediction-based methods and extends beyond other BioID studies of unique parasite compartments. Half of identified proteins have unknown function, and 77% are predicted to be important for normal blood-stage growth. We validate the apicoplast localization of a subset of novel proteins and show that an ATP-binding cassette protein ABCF1 is essential for blood-stage survival and plays a previously unknown role in apicoplast biogenesis. These findings indicate critical organellar functions for newly discovered apicoplast proteins. The apicoplast proteome will be an important resource for elucidating unique pathways derived from secondary endosymbiosis and prioritizing antimalarial drug targets.


Asunto(s)
Apicoplastos/metabolismo , Biología Computacional/métodos , Malaria/metabolismo , Malaria/parasitología , Parásitos/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Algoritmos , Animales , Bases de Datos de Proteínas , Retículo Endoplásmico/metabolismo , Plasmodium falciparum/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-30455243

RESUMEN

Toxoplasma gondii and related human parasites contain an essential plastid organelle called the apicoplast. Clinically used antibiotics and other inhibitors that disrupt apicoplast biogenesis cause a mysterious "delayed-death" phenotype in which parasite growth is unaffected during the first lytic cycle of inhibitor treatment but is severely inhibited in the second lytic cycle even after drug removal. Critical to understanding the complex downstream cellular effects of these drug classes are the timing of apicoplast loss during inhibitor treatment and how it relates to this peculiar growth phenotype. Here we show that, upon treatment with diverse classes of apicoplast inhibitors, newly replicated T. gondii parasites in the first lytic cycle initially form apicoplasts with defects in protein import or genome replication and eventually fail to inherit the apicoplast altogether. Despite the accumulation of parasites with defective or missing apicoplasts, growth is unaffected during the first lytic cycle, as previously observed. Strikingly, concomitant inhibition of host cell isoprenoid biosynthesis results in growth inhibition in the first lytic cycle and unmasks the apicoplast defects. These results suggest that defects in and even the complete loss of the apicoplast in T. gondii are partially rescued by scavenging of host cell metabolites, leading to death that is delayed. Our findings uncover host cell interactions that can alleviate apicoplast inhibition and highlight key differences in delayed-death inhibitors between T. gondii and Plasmodium falciparum.


Asunto(s)
Antimaláricos/uso terapéutico , Apicoplastos/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Antiparasitarios/uso terapéutico , Línea Celular , Citometría de Flujo , Interacciones Huésped-Parásitos , Humanos , Immunoblotting , Cinética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Toxoplasma/parasitología
5.
Mol Cell Proteomics ; 16(4 suppl 1): S54-S64, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28040698

RESUMEN

Plasmodium parasites contain several unique membrane compartments in which prenylated proteins may play important roles in pathogenesis. Protein prenylation has also been proposed as an antimalarial drug target because farnesyltransferase inhibitors cause potent growth inhibition of blood-stage Plasmodium However, the specific prenylated proteins that mediate antimalarial activity have yet to be identified. Given the potential for new parasite biology and elucidating drug mechanism-of-action, we performed a large-scale identification of the prenylated proteome in blood-stage P. falciparum parasites using an alkyne-labeled prenyl analog to specifically enrich parasite prenylated proteins. Twenty high-confidence candidates were identified, including several examples of pathogen-specific prenylation activity. One unique parasite prenylated protein was FYVE-containing coiled-coil protein (FCP), which is only conserved in Plasmodium and related Apicomplexan parasites and localizes to the parasite food vacuole. Targeting of FCP to this parasite-specific compartment was dependent on prenylation of its CaaX motif, as mutation of the prenylation site caused cytosolic mislocalization. We also showed that PfRab5b, which lacks C-terminal cysteines that are the only known site of Rab GTPase modification, is prenylated. Finally, we show that the THQ class of farnesyltransferase inhibitors abolishes FCP prenylation and causes its mislocalization, providing the first demonstration of a specific prenylated protein disrupted by antimalarial farnesyl transferase inhibitors. Altogether, these findings identify prenylated proteins that reveal unique parasite biology and are useful for evaluating prenyltransferase inhibitors for antimalarial drug development.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/metabolismo , Prenilación de Proteína/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Espectrometría de Masas/métodos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Conformación Proteica , Proteómica/métodos , Proteínas Protozoarias/química , Proteínas de Unión al GTP rab/metabolismo
7.
Antimicrob Agents Chemother ; 59(1): 356-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25367906

RESUMEN

The apicoplast is an essential plastid organelle found in Plasmodium parasites which contains several clinically validated antimalarial-drug targets. A chemical rescue screen identified MMV-08138 from the "Malaria Box" library of growth-inhibitory antimalarial compounds as having specific activity against the apicoplast. MMV-08138 inhibition of blood-stage Plasmodium falciparum growth is stereospecific and potent, with the most active diastereomer demonstrating a 50% effective concentration (EC50) of 110 nM. Whole-genome sequencing of 3 drug-resistant parasite populations from two independent selections revealed E688Q and L244I mutations in P. falciparum IspD, an enzyme in the MEP (methyl-d-erythritol-4-phosphate) isoprenoid precursor biosynthesis pathway in the apicoplast. The active diastereomer of MMV-08138 directly inhibited PfIspD activity in vitro with a 50% inhibitory concentration (IC50) of 7.0 nM. MMV-08138 is the first PfIspD inhibitor to be identified and, together with heterologously expressed PfIspD, provides the foundation for further development of this promising antimalarial drug candidate lead. Furthermore, this report validates the use of the apicoplast chemical rescue screen coupled with target elucidation as a discovery tool to identify specific apicoplast-targeting compounds with new mechanisms of action.


Asunto(s)
Antimaláricos/farmacología , Apicoplastos/efectos de los fármacos , Carbolinas/farmacología , Eritritol/análogos & derivados , Plasmodium falciparum/efectos de los fármacos , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/genética , Secuencia de Bases , ADN Protozoario/genética , Eritrocitos/parasitología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Análisis de Secuencia de ADN , Terpenos/química , Terpenos/metabolismo
8.
PLoS Biol ; 9(8): e1001138, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21912516

RESUMEN

Plasmodium spp parasites harbor an unusual plastid organelle called the apicoplast. Due to its prokaryotic origin and essential function, the apicoplast is a key target for development of new anti-malarials. Over 500 proteins are predicted to localize to this organelle and several prokaryotic biochemical pathways have been annotated, yet the essential role of the apicoplast during human infection remains a mystery. Previous work showed that treatment with fosmidomycin, an inhibitor of non-mevalonate isoprenoid precursor biosynthesis in the apicoplast, inhibits the growth of blood-stage P. falciparum. Herein, we demonstrate that fosmidomycin inhibition can be chemically rescued by supplementation with isopentenyl pyrophosphate (IPP), the pathway product. Surprisingly, IPP supplementation also completely reverses death following treatment with antibiotics that cause loss of the apicoplast. We show that antibiotic-treated parasites rescued with IPP over multiple cycles specifically lose their apicoplast genome and fail to process or localize organelle proteins, rendering them functionally apicoplast-minus. Despite the loss of this essential organelle, these apicoplast-minus auxotrophs can be grown indefinitely in asexual blood stage culture but are entirely dependent on exogenous IPP for survival. These findings indicate that isoprenoid precursor biosynthesis is the only essential function of the apicoplast during blood-stage growth. Moreover, apicoplast-minus P. falciparum strains will be a powerful tool for further investigation of apicoplast biology as well as drug and vaccine development.


Asunto(s)
Cloroplastos/metabolismo , Hemiterpenos/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/parasitología , Compuestos Organofosforados/farmacología , Parásitos/crecimiento & desarrollo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antibacterianos/farmacología , Muerte Celular/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/genética , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Genoma de Protozoos/genética , Humanos , Modelos Biológicos , Parásitos/citología , Parásitos/efectos de los fármacos , Parásitos/genética , Plasmodium falciparum/citología , Plasmodium falciparum/genética , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Terpenos/farmacología
9.
ISME Commun ; 4(1): ycae055, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38707843

RESUMEN

Epithemia spp. diatoms contain obligate, nitrogen-fixing endosymbionts, or diazoplasts, derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity. Here, we report a newly-isolated species, E. clementina, as a model to investigate endosymbiotic acquisition of nitrogen fixation. We demonstrate that the diazoplast, which has lost photosynthesis, provides fixed nitrogen to the diatom host in exchange for fixed carbon. To identify the metabolic changes associated with this endosymbiotic specialization, we compared the Epithemia diazoplast with its close, free-living cyanobacterial relative, Crocosphaera subtropica. Unlike C. subtropica, in which nitrogenase activity is temporally separated from photosynthesis, we show that nitrogenase activity in the diazoplast is continuous through the day (concurrent with host photosynthesis) and night. Host and diazoplast metabolism are tightly coupled to support nitrogenase activity: Inhibition of photosynthesis abolishes daytime nitrogenase activity, while nighttime nitrogenase activity no longer requires cyanobacterial glycogen storage pathways. Instead, import of host-derived carbohydrates supports nitrogenase activity throughout the day-night cycle. Carbohydrate metabolism is streamlined in the diazoplast compared to C. subtropica with retention of the oxidative pentose phosphate pathway and oxidative phosphorylation. Similar to heterocysts, these pathways may be optimized to support nitrogenase activity, providing reducing equivalents and ATP and consuming oxygen. Our results demonstrate that the diazoplast is specialized for endosymbiotic nitrogen fixation. Altogether, we establish a new model for studying endosymbiosis, perform a functional characterization of this diazotroph endosymbiosis, and identify metabolic adaptations for endosymbiotic acquisition of a critical biological function.

10.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260474

RESUMEN

Malaria, caused by Plasmodium falciparum, remains a significant health burden. A barrier for developing anti-malarial drugs is the ability of the parasite to rapidly generate resistance. We demonstrated that Salinipostin A (SalA), a natural product, kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism with a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent anti-parasitic potencies which enabled identification of therapeutically relevant targets. We also confirm that this compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor, Orlistat. Like SalA, our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are a promising, synthetically tractable anti-malarials with a low-propensity to induce resistance.

11.
bioRxiv ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066385

RESUMEN

Epithemia spp. diatoms contain obligate, nitrogen-fixing endosymbionts, or "diazoplasts", derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity. Here, we report a newly-isolated species, E. clementina, as a model to investigate endosymbiotic acquisition of nitrogen fixation. To detect the metabolic changes associated with endosymbiotic specialization, we compared nitrogen fixation, associated carbon and nitrogen metabolism, and their regulatory pathways in the Epithemia diazoplast with its close, free-living cyanobacterial relative, Crocosphaera subtropica. Unlike C. subtropica, we show that nitrogenase activity in the diazoplast is concurrent with, and even dependent on, host photosynthesis and no longer associated with cyanobacterial glycogen storage suggesting carbohydrates are imported from the host diatom. Carbohydrate catabolism in the diazoplast indicates that the oxidative pentose pathway and oxidative phosphorylation, in concert, generates reducing equivalents and ATP and consumes oxygen to support nitrogenase activity. In contrast to expanded nitrogenase activity, the diazoplast has diminished ability to utilize alternative nitrogen sources. Upon ammonium repletion, negative feedback regulation of nitrogen fixation was conserved, however ammonia assimilation showed paradoxical responses in the diazoplast compared with C. subtropica. The altered nitrogen regulation likely favors nitrogen transfer to the host. Our results suggest that the diazoplast is specialized for endosymbiotic nitrogen fixation. Altogether, we establish a new model for studying endosymbiosis, perform the first functional characterization of this diazotroph endosymbiosis, and identify metabolic adaptations for endosymbiotic acquisition of a critical biological function.

12.
mBio ; 14(1): e0364221, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36625582

RESUMEN

Atg8 family proteins are highly conserved eukaryotic proteins with diverse autophagy and nonautophagic functions in eukaryotes. While the structural features required for conserved autophagy functions of Atg8 are well established, little is known about the molecular changes that facilitated acquisition of divergent, nonautophagic functions of Atg8. The malaria parasite Plasmodium falciparum offers a unique opportunity to study nonautophagic functions of Atg8 family proteins because it encodes a single Atg8 homolog whose only essential function is in the inheritance of an unusual secondary plastid called the apicoplast. Here, we used functional complementation to investigate the structure-function relationship for this divergent Atg8 protein. We showed that the LC3-interacting region (LIR) docking site (LDS), the major interaction interface of the Atg8 protein family, is required for P. falciparum Atg8 (PfAtg8) apicoplast localization and function, likely via Atg8 lipidation. On the other hand, another region previously implicated in canonical Atg8 interactions, the N-terminal helix, is not required for apicoplast-specific PfAtg8 function. Finally, our investigations at the cellular level demonstrate that the unique apicomplexan-specific loop, previously implicated in interaction with membrane conjugation machinery in recombinant protein-based in vitro assays, is not required for membrane conjugation nor for the apicoplast-specific effector function of Atg8 in both P. falciparum and related Apicomplexa member Toxoplasma gondii. These results suggest that the effector function of apicomplexan Atg8 is mediated by structural features distinct from those previously identified for macroautophagy and selective autophagy functions. IMPORTANCE The most extensively studied role of Atg8 proteins is in autophagy. However, it is clear that they have other nonautophagic functions critical to cell function and disease pathogenesis that are so far understudied compared to their canonical role in autophagy. Mammalian cells contain multiple Atg8 paralogs that have diverse, specialized functions. Gaining molecular insight into their nonautophagic functions is difficult because of redundancy between the homologs and their role in both autophagy and nonautophagic pathways. Malaria parasites such as Plasmodium falciparum are a unique system to study a novel, nonautophagic function of Atg8 separate from its role in autophagy: they have only one Atg8 protein whose only essential function is in the inheritance of the apicoplast, a unique secondary plastid organelle. Insights into the molecular basis of PfAtg8's function in apicoplast biogenesis will have important implications for the evolution of diverse nonautophagic functions of the Atg8 protein family.


Asunto(s)
Apicoplastos , Malaria , Parásitos , Animales , Apicoplastos/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Malaria/metabolismo , Mamíferos/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
13.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36824743

RESUMEN

Increases in the copy number of large genomic regions, termed genome amplification, are an important adaptive strategy for malaria parasites. Numerous amplifications across the Plasmodium falciparum genome contribute directly to drug resistance or impact the fitness of this protozoan parasite. During the characterization of parasite lines with amplifications of the dihydroorotate dehydrogenase (DHODH) gene, we detected increased copies of an additional genomic region that encompassed 3 genes (~5 kb) including GTP cyclohydrolase I (GCH1 amplicon). While this gene is reported to increase the fitness of antifolate resistant parasites, GCH1 amplicons had not previously been implicated in any other antimalarial resistance context. Here, we further explored the association between GCH1 and DHODH copy number. Using long read sequencing and single read visualization, we directly observed a higher number of tandem GCH1 amplicons in parasites with increased DHODH copies (up to 9 amplicons) compared to parental parasites (3 amplicons). While all GCH1 amplicons shared a consistent structure, expansions arose in 2-unit steps (from 3 to 5 to 7, etc copies). Adaptive evolution of DHODH and GCH1 loci was further bolstered when we evaluated prior selection experiments; DHODH amplification was only successful in parasite lines with pre-existing GCH1 amplicons. These observations, combined with the direct connection between metabolic pathways that contain these enzymes, lead us to propose that the GCH1 locus is beneficial for the fitness of parasites exposed to DHODH inhibitors. This finding highlights the importance of studying variation within individual parasite genomes as well as biochemical connections of drug targets as novel antimalarials move towards clinical approval.

14.
ACS Infect Dis ; 9(10): 2036-2047, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37712594

RESUMEN

The Plasmodium proteasome is a promising antimalarial drug target due to its essential role in all parasite lifecycle stages. Furthermore, proteasome inhibitors have synergistic effects when combined with current first-line artemisinin and related analogues. Linear peptides that covalently inhibit the proteasome are effective at killing parasites and have a low propensity for inducing resistance. However, these scaffolds generally suffer from poor pharmacokinetics and bioavailability. Here we describe the development of covalent, irreversible, macrocyclic inhibitors of the Plasmodium falciparum proteasome. We identified compounds with excellent potency and low cytotoxicity; however, the first generation suffered from poor microsomal stability. Further optimization of an existing macrocyclic scaffold resulted in an irreversible covalent inhibitor carrying a vinyl sulfone electrophile that retained high potency and low cytotoxicity and had acceptable metabolic stability. Importantly, unlike the parent reversible inhibitor that selected for multiple mutations in the proteasome, with one resulting in a 5,000-fold loss of potency, the irreversible analogue only showed a 5-fold loss in potency for any single point mutation. Furthermore, an epoxyketone analogue of the same scaffold retained potency against a panel of known proteasome mutants. These results confirm that macrocycles are optimal scaffolds to target the malarial proteasome and that the use of a covalent electrophile can greatly reduce the ability of the parasite to generate drug resistance mutations.

15.
Nature ; 436(7054): 1191-4, 2005 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-16121186

RESUMEN

Enzymatic incorporation of chlorine, bromine or iodine atoms occurs during the biosynthesis of more than 4,000 natural products. Halogenation can have significant consequences for the bioactivity of these products so there is great interest in understanding the biological catalysts that perform these reactions. Enzymes that halogenate unactivated aliphatic groups have not previously been characterized. Here we report the activity of five proteins-CmaA, CmaB, CmaC, CmaD and CmaE-in the construction of coronamic acid (CMA; 1-amino-1-carboxy-2-ethylcyclopropane), a constituent of the phytotoxin coronatine synthesized by the phytopathogenic bacterium Pseudomonas syringae. CMA derives from l-allo-isoleucine, which is covalently attached to CmaD through the actions of CmaA, a non-ribosomal peptide synthetase module, and CmaE, an unusual acyltransferase. We show that CmaB, a member of the non-haem Fe(2+), alpha-ketoglutarate-dependent enzyme superfamily, is the first of its class to show halogenase activity, chlorinating the gamma-position of l-allo-isoleucine. Another previously undescribed enzyme, CmaC, catalyses the formation of the cyclopropyl ring from the gamma-Cl-l-allo-isoleucine product of the CmaB reaction. Together, CmaB and CmaC execute gamma-halogenation followed by intramolecular gamma-elimination, in which biological chlorination is a cryptic strategy for cyclopropyl ring formation.


Asunto(s)
Aminoácidos/biosíntesis , Proteínas Bacterianas/metabolismo , Cloro/metabolismo , Enzimas/química , Enzimas/metabolismo , Hierro/metabolismo , Aciltransferasas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas Bacterianas/química , Catálisis , Hemo , Indenos/química , Indenos/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Pseudomonas syringae/metabolismo , Valina/metabolismo
16.
Clin Infect Dis ; 50(3): 391-4, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20047483

RESUMEN

We report a case of 2009 influenza A(H1N1) virus infection in which virus was detected predominantly in specimens from the lower respiratory tract but was absent or at very low levels in nasopharyngeal swab samples. This presentation suggests that, in certain hosts or for particular variants of 2009 A(H1N1) virus, the lower respiratory tract may be the preferred site of infection.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/patología , Gripe Humana/virología , Pulmón/virología , Sistema Respiratorio/virología , Animales , Niño , Femenino , Humanos , Masculino , Nasofaringe/virología
17.
J Clin Microbiol ; 48(8): 2672-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20519472

RESUMEN

In vitro gamma interferon release assays (IGRAs) are increasingly used as an alternative to the traditional tuberculin skin test for the diagnosis of latent Mycobacterium tuberculosis infection. Evaluation of the QuantiFERON-TB Gold in-tube assay (QFT-IT) prior to large-scale implementation at the Stanford Hospital and Clinics for a health care worker screening program revealed a critical preanalytical factor affecting the results. We found that incubation delay significantly increased the frequency of indeterminate results. In this study, QFT-IT was performed with samples from healthy volunteers, and replicate tubes were incubated at 37 degrees C either immediately or after a delay at room temperature for 6 and 12 h. No indeterminate results (0/41) were seen when the assay was performed with immediate incubation. Incubation delays of 6 and 12 h yielded indeterminate results at rates of 10% (2/20) (P = 0.10) and 17.1% (7/41) (P = 0.01), respectively. The increased rate of indeterminate results was due to a decrease in the mean values for the mitogen-nil tubes when incubation was delayed for 6 h (P = 0.004) and 12 h (P < 0.001). The rates of concordance of positive or negative results obtained following immediate incubation and following 6- and 12-h delays were 77.8% (14/18) and 79.4% (27/34), respectively. Subsequent implementation of the immediate incubation procedure in our screening program for 14,830 health care workers yielded an indeterminate result rate of 0.36% over a period of 12 months, a significant improvement over the reported rates of 5 to 40% for QFT-IT. We conclude that immediate incubation of QFT-IT tubes is an effective way to minimize indeterminate results. The effect of incubation delay on the accuracy of QFT-IT remains to be determined.


Asunto(s)
Técnicas Bacteriológicas/métodos , Mycobacterium tuberculosis/aislamiento & purificación , Manejo de Especímenes/métodos , Tuberculosis/diagnóstico , Humanos , Inmunoensayo/métodos , Interferón gamma/metabolismo , Mycobacterium tuberculosis/inmunología , Sensibilidad y Especificidad , Linfocitos T/inmunología , Factores de Tiempo
18.
J Clin Microbiol ; 48(3): 785-90, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20071556

RESUMEN

Nucleic acid amplification tests (NAATs) have revolutionized infectious disease diagnosis, allowing for the rapid and sensitive identification of pathogens in clinical specimens. Real-time PCR testing for the mecA gene (mecA PCR), which confers methicillin resistance in staphylococci, has the added potential to reduce antibiotic usage, improve clinical outcomes, lower health care costs, and avoid emergence of drug resistance. A retrospective study was performed to identify patients infected with methicillin-sensitive staphylococcal isolates who were receiving vancomycin treatment when susceptibility results became available. Vancomycin treatment and length of hospitalization were compared in these patients for a 6-month period before and after implementation of mecA PCR. Among 65 and 94 patients identified before and after mecA PCR, respectively, vancomycin usage (measured in days on therapy) declined from a median of 3 days (range, 1 to 44 days) in the pre-PCR period to 1 day (range, 0 to 18 days) in the post-PCR period (P < 0.0001). In total, 38.5% (25/65) of patients were switched to beta-lactam therapy in the pre-PCR period, compared to 61.7% (58/94) in the post-PCR period (P = 0.004). Patient hospitalization days also declined from a median of 8 days (range, 1 to 47 days) in the pre-PCR period to 5 days (range, 0 to 42 days) in the post-PCR period (P = 0.03). Real-time PCR testing for mecA is an effective tool for reducing vancomycin usage and length of stay of hospitalized patients infected with methicillin-sensitive staphylococci. In the face of ever-rising health care expenditures in the United States, these findings have important implications for improving outcomes and decreasing costs.


Asunto(s)
Antibacterianos/uso terapéutico , Tiempo de Internación , Resistencia a la Meticilina , Reacción en Cadena de la Polimerasa/métodos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Vancomicina/uso terapéutico , Adulto , Anciano , Proteínas Bacterianas/genética , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana/métodos , Persona de Mediana Edad , Proteínas de Unión a las Penicilinas , Estudios Retrospectivos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/genética , Estados Unidos
19.
mBio ; 11(5)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024034

RESUMEN

Plasmodium parasites and related apicomplexans contain an essential "complex plastid" organelle of secondary endosymbiotic origin, the apicoplast. Biogenesis of this complex plastid poses a unique challenge requiring evolution of new cellular machinery. We previously conducted a mutagenesis screen for essential apicoplast biogenesis genes to discover organellar pathways with evolutionary and biomedical significance. Here we validate and characterize a gene candidate from our screen, Pf3D7_0913500. Using a conditional knockdown strain, we show that Pf3D7_0913500 depletion causes growth inhibition that is rescued by the sole essential product of the apicoplast, isopentenyl pyrophosphate (IPP), and results in apicoplast loss. Because Pf3D7_0913500 had no previous functional annotation, we name it apicoplast-minus IPP-rescued 4 (AMR4). AMR4 has an annotated CaaX protease and bacteriocin processing (CPBP) domain, which in eukaryotes typically indicates a role in CaaX postprenylation processing. Indeed, AMR4 is the only putative CaaX-like protease in Plasmodium parasites which are known to require protein prenylation, and we confirm that the conserved catalytic residue of AMR4 (E352) is required for its apicoplast function. However, we unexpectedly find that AMR4 does not act in a CaaX postprenylation processing pathway in Plasmodium falciparum Instead, we find that AMR4 is imported into the apicoplast and is derived from a cyanobacterial CPBP gene which was retained through both primary and secondary endosymbiosis. Our findings suggest that AMR4 is not a true CaaX protease, but instead it performs a conserved, uncharacterized chloroplast function that has been retained for complex plastid biogenesis.IMPORTANCEPlasmodium parasites, which cause malaria, and related apicomplexans are important human and veterinary pathogens. These parasites represent a highly divergent and understudied branch of eukaryotes, and as such often defy the expectations set by model organisms. One striking example of unique apicomplexan biology is the apicoplast, an essential but nonphotosynthetic plastid derived from an unusual secondary (eukaryote-eukaryote) endosymbiosis. Endosymbioses are a major driver of cellular innovation, and apicoplast biogenesis pathways represent a hot spot for molecular evolution. We previously conducted an unbiased screen for apicoplast biogenesis genes in P. falciparum to uncover these essential and innovative pathways. Here, we validate a novel gene candidate from our screen and show that its role in apicoplast biogenesis does not match its functional annotation predicted by model eukaryotes. Our findings suggest that an uncharacterized chloroplast maintenance pathway has been reused for complex plastid biogenesis in this divergent branch of pathogens.


Asunto(s)
Biogénesis de Organelos , Péptido Hidrolasas/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plastidios/fisiología , Proteínas Protozoarias/genética , Cianobacterias/enzimología , Cianobacterias/genética , Eritrocitos/parasitología , Hemiterpenos/metabolismo , Humanos , Malaria/parasitología , Compuestos Organofosforados/metabolismo , Péptido Hidrolasas/clasificación , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo
20.
PLoS Negl Trop Dis ; 14(3): e0008150, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196500

RESUMEN

Parasitic infections are a major source of human suffering, mortality, and economic loss, but drug development for these diseases has been stymied by the significant expense involved in bringing a drug though clinical trials and to market. Identification of single compounds active against multiple parasitic pathogens could improve the economic incentives for drug development as well as simplifying treatment regimens. We recently performed a screen of repurposed compounds against the protozoan parasite Entamoeba histolytica, causative agent of amebic dysentery, and identified four compounds (anisomycin, prodigiosin, obatoclax and nithiamide) with low micromolar potency and drug-like properties. Here, we extend our investigation of these drugs. We assayed the speed of killing of E. histolytica trophozoites and found that all four have more rapid action than the current drug of choice, metronidazole. We further established a multi-institute collaboration to determine whether these compounds may have efficacy against other parasites and opportunistic pathogens. We found that anisomycin, prodigiosin and obatoclax all have broad-spectrum antiparasitic activity in vitro, including activity against schistosomes, T. brucei, and apicomplexan parasites. In several cases, the drugs were found to have significant improvements over existing drugs. For instance, both obatoclax and prodigiosin were more efficacious at inhibiting the juvenile form of Schistosoma than the current standard of care, praziquantel. Additionally, low micromolar potencies were observed against pathogenic free-living amebae (Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba castellanii), which cause CNS infection and for which there are currently no reliable treatments. These results, combined with the previous human use of three of these drugs (obatoclax, anisomycin and nithiamide), support the idea that these compounds could serve as the basis for the development of broad-spectrum anti-parasitic drugs.


Asunto(s)
Anisomicina/farmacología , Antiparasitarios/farmacología , Reposicionamiento de Medicamentos , Parásitos/efectos de los fármacos , Prodigiosina/farmacología , Pirroles/farmacología , Animales , Anisomicina/efectos adversos , Anisomicina/farmacocinética , Antiparasitarios/efectos adversos , Antiparasitarios/farmacocinética , Línea Celular , Supervivencia Celular , Fibroblastos/efectos de los fármacos , Humanos , Indoles , Ratones , Pruebas de Sensibilidad Parasitaria , Prodigiosina/efectos adversos , Prodigiosina/farmacocinética , Pirroles/efectos adversos , Pirroles/farmacocinética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA