Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell ; 185(5): 755-758, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245477

RESUMEN

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Asunto(s)
Academias e Institutos , Investigación Biomédica , Facultades de Medicina
2.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293792

RESUMEN

Ventricular and atrial cardiac chambers have unique structural and contractile characteristics that underlie their distinct functions. The maintenance of chamber-specific features requires active reinforcement, even in differentiated cardiomyocytes. Previous studies in zebrafish have shown that sustained FGF signaling acts upstream of Nkx factors to maintain ventricular identity, but the rest of this maintenance pathway remains unclear. Here, we show that MEK1/2-ERK1/2 signaling acts downstream of FGF and upstream of Nkx factors to promote ventricular maintenance. Inhibition of MEK signaling, like inhibition of FGF signaling, results in ectopic atrial gene expression and reduced ventricular gene expression in ventricular cardiomyocytes. FGF and MEK signaling both influence ventricular maintenance over a similar timeframe, when phosphorylated ERK (pERK) is present in the myocardium. However, the role of FGF-MEK activity appears to be context-dependent: some ventricular regions are more sensitive than others to inhibition of FGF-MEK signaling. Additionally, in the atrium, although endogenous pERK does not induce ventricular traits, heightened MEK signaling can provoke ectopic ventricular gene expression. Together, our data reveal chamber-specific roles of MEK-ERK signaling in the maintenance of ventricular and atrial identities.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Transducción de Señal/genética , Miocitos Cardíacos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
3.
Dev Dyn ; 253(1): 157-172, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37083132

RESUMEN

BACKGROUND: Essential patterning processes transform the heart tube into a compartmentalized organ with distinct chambers separated by an atrioventricular canal (AVC). This transition involves the refinement of expression of genes that are first found broadly throughout the heart tube and then become restricted to the AVC. Despite the importance of cardiac patterning, we do not fully understand the mechanisms that limit gene expression to the AVC. RESULTS: We show that the zebrafish gene smarcc1a, encoding a BAF chromatin remodeling complex subunit homologous to mammalian BAF155, is critical for cardiac patterning. In smarcc1a mutants, myocardial differentiation and heart tube assembly appear to proceed normally. Subsequently, the smarcc1a mutant heart fails to exhibit refinement of gene expression patterns to the AVC, and the persistence of broad gene expression is accompanied by failure of chamber expansion. In addition to their cardiac defects, smarcc1a mutants lack pectoral fins, indicating similarity to tbx5a mutants. However, comparison of smarcc1a and tbx5a mutants suggests that perturbation of tbx5a function is not sufficient to cause the smarcc1a mutant phenotype. CONCLUSIONS: Our data indicate an important role for Smarcc1a-containing chromatin remodeling complexes in regulating the changes in gene expression and morphology that distinguish the AVC from the cardiac chambers.


Asunto(s)
Cojinetes Endocárdicos , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Pez Cebra/metabolismo , Corazón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo
4.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34338289

RESUMEN

Transcriptional regulatory networks refine gene expression boundaries to define the dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that establish the boundary between the IM and neighboring vessel progenitors are poorly understood. Here, we delineate roles for the zinc-finger transcription factor Osr1 in kidney and vessel progenitor development. Zebrafish osr1 mutants display decreased IM formation and premature emergence of lateral vessel progenitors (LVPs). These phenotypes contrast with the increased IM and absent LVPs observed with loss of the bHLH transcription factor Hand2, and loss of hand2 partially suppresses osr1 mutant phenotypes. hand2 and osr1 are expressed together in the posterior mesoderm, but osr1 expression decreases dramatically prior to LVP emergence. Overexpressing osr1 during this timeframe inhibits LVP development while enhancing IM formation, and can rescue the osr1 mutant phenotype. Together, our data demonstrate that osr1 modulates the extent of IM formation and the temporal dynamics of LVP development, suggesting that a balance between levels of osr1 and hand2 expression is essential to demarcate the kidney and vessel progenitor territories.


Asunto(s)
Diferenciación Celular/fisiología , Mesodermo/metabolismo , Mesodermo/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Riñón/metabolismo , Riñón/fisiología , Organogénesis/fisiología , Factores de Transcripción/metabolismo
5.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32439760

RESUMEN

Physical forces are important participants in the cellular dynamics that shape developing organs. During heart formation, for example, contractility and blood flow generate biomechanical cues that influence patterns of cell behavior. Here, we address the interplay between function and form during the assembly of the cardiac outflow tract (OFT), a crucial connection between the heart and vasculature that develops while circulation is under way. In zebrafish, we find that the OFT expands via accrual of both endocardial and myocardial cells. However, when cardiac function is disrupted, OFT endocardial growth ceases, accompanied by reduced proliferation and reduced addition of cells from adjacent vessels. The flow-responsive TGFß receptor Acvrl1 is required for addition of endocardial cells, but not for their proliferation, indicating distinct modes of function-dependent regulation for each of these essential cell behaviors. Together, our results indicate that cardiac function modulates OFT morphogenesis by triggering endocardial cell accumulation that induces OFT lumen expansion and shapes OFT dimensions. Moreover, these morphogenetic mechanisms provide new perspectives regarding the potential causes of cardiac birth defects.


Asunto(s)
Endocardio/metabolismo , Corazón/fisiología , Pez Cebra/metabolismo , Receptores de Activinas/antagonistas & inhibidores , Receptores de Activinas/genética , Receptores de Activinas/metabolismo , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Proliferación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endocardio/citología , Corazón/anatomía & histología , Corazón/crecimiento & desarrollo , Morfolinos/metabolismo , Troponina T/antagonistas & inhibidores , Troponina T/genética , Troponina T/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Dev Dyn ; 249(8): 1018-1031, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32243675

RESUMEN

BACKGROUND: The self-assembly of metabolic enzymes into filaments or foci highlights an intriguing mechanism for the regulation of metabolic activity. Recently, we identified the conserved polymerization of phosphoribosyl pyrophosphate synthetase (PRPS), which catalyzes the first step in purine nucleotide synthesis, in yeast and cultured mammalian cells. While previous work has revealed that loss of PRPS activity regulates retinal development in zebrafish, the extent to which PRPS filament formation affects tissue development remains unknown. RESULTS: By generating novel alleles in the zebrafish PRPS paralogs, prps1a and prps1b, we gained new insight into the role of PRPS filaments during eye development. We found that mutations in prps1a alone are sufficient to generate abnormally small eyes along with defects in head size, pigmentation, and swim bladder inflation. Furthermore, a loss-of-function mutation that truncates the Prps1a protein resulted in the failure of PRPS filament assembly. Lastly, in mutants that fail to assemble PRPS filaments, we observed disorganization of the actin network in the lens fibers. CONCLUSIONS: The truncation of Prps1a blocked PRPS filament formation and resulted in a disorganized lens fiber actin network. Altogether, these findings highlight a potential role for PRPS filaments during lens fiber organization in zebrafish.


Asunto(s)
Cristalino/embriología , Cristalino/crecimiento & desarrollo , Ribosa-Fosfato Pirofosfoquinasa/genética , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Actinas/metabolismo , Sacos Aéreos/embriología , Alelos , Animales , Ojo/embriología , Ojo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Microscopía Fluorescente , Mutación , Pigmentación , Polimerizacion , Retina/embriología , Epitelio Pigmentado de la Retina/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Development ; 144(7): 1328-1338, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28232600

RESUMEN

Atrial and ventricular cardiac chambers behave as distinct subunits with unique morphological, electrophysiological and contractile properties. Despite the importance of chamber-specific features, chamber fate assignments remain relatively plastic, even after differentiation is underway. In zebrafish, Nkx transcription factors are essential for the maintenance of ventricular characteristics, but the signaling pathways that operate upstream of Nkx factors in this context are not well understood. Here, we show that FGF signaling plays an essential part in enforcing ventricular identity. Loss of FGF signaling results in a gradual accumulation of atrial cells, a corresponding loss of ventricular cells, and the appearance of ectopic atrial gene expression within the ventricle. These phenotypes reflect important roles for FGF signaling in promoting ventricular traits, both in early-differentiating cells that form the initial ventricle and in late-differentiating cells that append to its arterial pole. Moreover, we find that FGF signaling functions upstream of Nkx genes to inhibit ectopic atrial gene expression. Together, our data suggest a model in which sustained FGF signaling acts to suppress cardiomyocyte plasticity and to preserve the integrity of the ventricular chamber.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Organogénesis , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Diferenciación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Organogénesis/genética , Transducción de Señal/genética , Factores de Tiempo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Dev Dyn ; 248(12): 1195-1210, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31444829

RESUMEN

BACKGROUND: Atrioventricular valve development relies upon the precisely defined dimensions of the atrioventricular canal (AVC). Current models suggest that Wnt signaling plays an important role atop a pathway that promotes AVC development. The factors that confine AVC differentiation to the appropriate location, however, are less well understood. RESULTS: Transmembrane protein 2 (Tmem2) is a key player in restricting AVC differentiation: in zebrafish, tmem2 mutants display an expansion of AVC characteristics, but the molecular mechanism of Tmem2 function in this context remains unclear. Through structure-function analysis, we demonstrate that the extracellular portion of Tmem2 is crucial for its role in restricting AVC boundaries. Importantly, the Tmem2 ectodomain contains regions implicated in the depolymerization of hyaluronic acid (HA). We find that tmem2 mutant hearts exhibit excess HA deposition alongside broadened distribution of Wnt signaling. Moreover, addition of ectopic hyaluronidase can restore the restriction of AVC differentiation in tmem2 mutants. Finally, we show that alteration of a residue important for HA depolymerization impairs the efficacy of Tmem2 function during AVC development. CONCLUSIONS: Taken together, our data support a model in which HA degradation, regulated by Tmem2, limits the distribution of Wnt signaling and thereby confines the differentiation of the AVC.


Asunto(s)
Defectos de los Tabiques Cardíacos/genética , Tabiques Cardíacos/embriología , Ventrículos Cardíacos/embriología , Ácido Hialurónico/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Metabolismo de los Hidratos de Carbono/genética , Embrión no Mamífero , Corazón/embriología , Defectos de los Tabiques Cardíacos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Organogénesis/genética , Transducción de Señal/genética , Vía de Señalización Wnt/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Development ; 143(16): 2965-72, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27471259

RESUMEN

Skeletal muscle morphogenesis depends upon interactions between developing muscle fibers and the extracellular matrix (ECM) that anchors fibers to the myotendinous junction (MTJ). The pathways that organize the ECM and regulate its engagement by cell-matrix adhesion complexes (CMACs) are therefore essential for muscle integrity. Here, we demonstrate the impact of transmembrane protein 2 (tmem2) on cell-matrix interactions during muscle morphogenesis in zebrafish. Maternal-zygotic tmem2 mutants (MZtmem2) exhibit muscle fiber detachment, in association with impaired laminin organization and ineffective fibronectin degradation at the MTJ. Similarly, disorganized laminin and fibronectin surround MZtmem2 cardiomyocytes, which could account for their hindered movement during cardiac morphogenesis. In addition to ECM defects, MZtmem2 mutants display hypoglycosylation of α-dystroglycan within the CMAC, which could contribute to the observed fiber detachment. Expression of the Tmem2 ectodomain can rescue aspects of the MZtmem2 phenotype, consistent with a possible extracellular function of Tmem2. Together, our results suggest that Tmem2 regulates cell-matrix interactions by affecting both ECM organization and CMAC activity. These findings evoke possible connections between the functions of Tmem2 and the etiologies of congenital muscular dystrophies, particularly dystroglycanopathies.


Asunto(s)
Embrión no Mamífero/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Uniones Célula-Matriz/metabolismo , Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Proteínas de la Membrana/genética , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
10.
Nature ; 498(7455): 497-501, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23783515

RESUMEN

Despite current treatment regimens, heart failure remains the leading cause of morbidity and mortality in the developed world due to the limited capacity of adult mammalian ventricular cardiomyocytes to divide and replace ventricular myocardium lost from ischaemia-induced infarct. Hence there is great interest to identify potential cellular sources and strategies to generate new ventricular myocardium. Past studies have shown that fish and amphibians and early postnatal mammalian ventricular cardiomyocytes can proliferate to help regenerate injured ventricles; however, recent studies have suggested that additional endogenous cellular sources may contribute to this overall ventricular regeneration. Here we have developed, in the zebrafish (Danio rerio), a combination of fluorescent reporter transgenes, genetic fate-mapping strategies and a ventricle-specific genetic ablation system to discover that differentiated atrial cardiomyocytes can transdifferentiate into ventricular cardiomyocytes to contribute to zebrafish cardiac ventricular regeneration. Using in vivo time-lapse and confocal imaging, we monitored the dynamic cellular events during atrial-to-ventricular cardiomyocyte transdifferentiation to define intermediate cardiac reprogramming stages. We observed that Notch signalling becomes activated in the atrial endocardium following ventricular ablation, and discovered that inhibiting Notch signalling blocked the atrial-to-ventricular transdifferentiation and cardiac regeneration. Overall, these studies not only provide evidence for the plasticity of cardiac lineages during myocardial injury, but more importantly reveal an abundant new potential cardiac resident cellular source for cardiac ventricular regeneration.


Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Corazón/fisiología , Miocardio/citología , Regeneración/fisiología , Pez Cebra/fisiología , Animales , Muerte Celular , Corazón/embriología , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Pez Cebra/embriología
11.
Genesis ; 55(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28109039

RESUMEN

In gnathostomes, dorsoventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches is crucial for the development of hinged jaws. One of the key signals that mediate this process is Endothelin-1 (EDN1). Loss of EDN1 binding to the Endothelin-A receptor (EDNRA) results in loss of EDNRA signaling and subsequent facial birth defects in humans, mice and zebrafish. A rate-limiting step in this crucial signaling pathway is the conversion of immature EDN1 into a mature active form by Endothelin converting enzyme-1 (ECE1). However, surprisingly little is known about how Ece1 transcription is induced or regulated. We show here that Nkx2.5 is required for proper craniofacial development in zebrafish and acts in part by upregulating ece1 expression. Disruption of nkx2.5 in zebrafish embryos results in defects in both ventral and dorsal pharyngeal arch-derived elements, with changes in ventral arch gene expression consistent with a disruption in Ednra signaling. ece1 mRNA rescues the nkx2.5 morphant phenotype, indicating that Nkx2.5 functions through modulating Ece1 expression or function. These studies illustrate a new function for Nkx2.5 in embryonic development and provide new avenues with which to pursue potential mechanisms underlying human facial disorders.


Asunto(s)
Enzimas Convertidoras de Endotelina/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5/genética , Cresta Neural/metabolismo , Proteínas de Pez Cebra/genética , Animales , Enzimas Convertidoras de Endotelina/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Ratones , Cresta Neural/embriología , Faringe/embriología , Faringe/metabolismo , Regulación hacia Arriba , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
Development ; 141(16): 3112-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25038045

RESUMEN

Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Miocitos Cardíacos/citología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , ADN/química , Perfilación de la Expresión Génica , Genotipo , Hibridación in Situ , Hibridación Fluorescente in Situ , Ratones , Datos de Secuencia Molecular , Regeneración , Homología de Secuencia de Aminoácido , Transgenes , Proteínas de Pez Cebra/genética
13.
Development ; 140(20): 4203-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24026123

RESUMEN

Establishment of specific characteristics of each embryonic cardiac chamber is crucial for development of a fully functional adult heart. Despite the importance of defining and maintaining unique features in ventricular and atrial cardiomyocytes, the regulatory mechanisms guiding these processes are poorly understood. Here, we show that the homeodomain transcription factors Nkx2.5 and Nkx2.7 are necessary to sustain ventricular chamber attributes through repression of atrial chamber identity. Mutation of nkx2.5 in zebrafish yields embryos with diminutive ventricular and bulbous atrial chambers. These chamber deformities emerge gradually during development, with a severe collapse in the number of ventricular cardiomyocytes and an accumulation of excess atrial cardiomyocytes as the heart matures. Removal of nkx2.7 function from nkx2.5 mutants exacerbates the loss of ventricular cells and the gain of atrial cells. Moreover, in these Nkx-deficient embryos, expression of vmhc, a ventricular gene, fades, whereas expression of amhc, an atrial gene, expands. Cell-labeling experiments suggest that ventricular cardiomyocytes can transform into atrial cardiomyocytes in the absence of Nkx gene function. Through suggestion of transdifferentiation from ventricular to atrial fate, our data reveal a pivotal role for Nkx genes in maintaining ventricular identity and highlight remarkable plasticity in differentiated myocardium. Thus, our results are relevant to the etiologies of fetal and neonatal cardiac pathology and could direct future innovations in cardiac regenerative medicine.


Asunto(s)
Atrios Cardíacos/embriología , Ventrículos Cardíacos/embriología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Miosinas Atriales/biosíntesis , Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Genotipo , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Mutación , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Miosinas Ventriculares/biosíntesis , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Development ; 139(22): 4271-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23052905

RESUMEN

A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking.


Asunto(s)
Caenorhabditis elegans/embriología , Procesamiento de Imagen Asistido por Computador/métodos , Morfogénesis , Programas Informáticos , Pez Cebra/embriología , Animales , Diferenciación Celular , División Celular , Movimiento Celular , Núcleo Celular/metabolismo , Computadores , Embrión no Mamífero , Epidermis/metabolismo , Análisis de la Célula Individual , Estadística como Asunto
17.
Dev Biol ; 383(2): 214-26, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24075907

RESUMEN

The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endocardio/embriología , Endocardio/metabolismo , Uniones Intercelulares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Endocardio/patología , Endocardio/trasplante , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/embriología , Atrios Cardíacos/metabolismo , Morfogénesis , Miocardio/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Pez Cebra/embriología
18.
Development ; 138(19): 4199-205, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21896630

RESUMEN

Coordination between adjacent tissues plays a crucial role during the morphogenesis of developing organs. In the embryonic heart, two tissues - the myocardium and the endocardium - are closely juxtaposed throughout their development. Myocardial and endocardial cells originate in neighboring regions of the lateral mesoderm, migrate medially in a synchronized fashion, collaborate to create concentric layers of the heart tube, and communicate during formation of the atrioventricular canal. Here, we identify a novel transmembrane protein, Tmem2, that has important functions during both myocardial and endocardial morphogenesis. We find that the zebrafish mutation frozen ventricle (frv) causes ectopic atrioventricular canal characteristics in the ventricular myocardium and endocardium, indicating a role of frv in the regional restriction of atrioventricular canal differentiation. Furthermore, in maternal-zygotic frv mutants, both myocardial and endocardial cells fail to move to the midline normally, indicating that frv facilitates cardiac fusion. Positional cloning reveals that the frv locus encodes Tmem2, a predicted type II single-pass transmembrane protein. Homologs of Tmem2 are present in all examined vertebrate genomes, but nothing is known about its molecular or cellular function in any context. By employing transgenes to drive tissue-specific expression of tmem2, we find that Tmem2 can function in the endocardium to repress atrioventricular differentiation within the ventricle. Additionally, Tmem2 can function in the myocardium to promote the medial movement of both myocardial and endocardial cells. Together, our data reveal that Tmem2 is an essential mediator of myocardium-endocardium coordination during cardiac morphogenesis.


Asunto(s)
Endocardio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Proteínas de la Membrana/fisiología , Miocardio/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Clonación Molecular , Cruzamientos Genéticos , Femenino , Hibridación in Situ , Masculino , Proteínas de la Membrana/genética , Microscopía Fluorescente/métodos , Modelos Genéticos , Morfogénesis , Mutación , Distribución Tisular , Transgenes , Pez Cebra , Proteínas de Pez Cebra/genética
19.
Development ; 138(16): 3421-30, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21752928

RESUMEN

Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.


Asunto(s)
Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Muerte Celular
20.
Dev Biol ; 362(2): 242-53, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22192888

RESUMEN

Cardiomyocyte hypertrophy is a complex cellular behavior involving coordination of cell size expansion and myofibril content increase. Here, we investigate the contribution of cardiomyocyte hypertrophy to cardiac chamber emergence, the process during which the primitive heart tube transforms into morphologically distinct chambers and increases its contractile strength. Focusing on the emergence of the zebrafish ventricle, we observed trends toward increased cell surface area and myofibril content. To examine the extent to which these trends reflect coordinated hypertrophy of individual ventricular cardiomyocytes, we developed a method for tracking cell surface area changes and myofibril dynamics in live embryos. Our data reveal a previously unappreciated heterogeneity of ventricular cardiomyocyte behavior during chamber emergence: although cardiomyocyte hypertrophy was prevalent, many cells did not increase their surface area or myofibril content during the observed timeframe. Despite the heterogeneity of cell behavior, we often found hypertrophic cells neighboring each other. Next, we examined the impact of blood flow on the regulation of cardiomyocyte behavior during this phase of development. When blood flow through the ventricle was reduced, cell surface area expansion and myofibril content increase were both dampened, and the behavior of neighboring cells did not seem coordinated. Together, our studies suggest a model in which hemodynamic forces have multiple influences on cardiac chamber emergence: promoting both cardiomyocyte enlargement and myofibril maturation, enhancing the extent of cardiomyocyte hypertrophy, and facilitating the coordination of neighboring cell behaviors.


Asunto(s)
Ventrículos Cardíacos/embriología , Modelos Biológicos , Morfogénesis/fisiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Flujo Sanguíneo Regional/fisiología , Pez Cebra/embriología , Animales , Aumento de la Célula , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Hemodinámica , Proteínas Luminiscentes , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA