RESUMEN
Many studies on phenotypic antimicrobial resistance (AMR) of bacteria from healthy populations are conducted on freeze-stored samples. However, the impact of this practice on phenotypic AMR is not known. We investigated the prevalence of phenotypic AMR in Escherichia coli from chicken (n = 10) and human (n = 11) faecal samples collected from healthy subjects, subject to freeze storage (-20 °C and -80 °C) for 1, 2, 3, and 6 months. We compared counts of E. coli and prevalence of phenotypic resistance against five antimicrobials commonly used in chicken farming (ciprofloxacin, enrofloxacin, doxycycline, gentamicin, and florfenicol) with samples processed within 24 h of collection. Prevalence of phenotypic AMR was estimated by performing differential counts on agar media with and without antimicrobials. At -20 °C, there was a considerable reduction in E. coli counts over time, and this reduction was greater for human samples (-0.630 log10 units per 100 days) compared with chicken samples (-0.178 log10 units per 100 days). For most antimicrobials, AMR prevalence estimates decreased in freeze-stored samples both in humans and chickens over time. Based on these results, we conclude that results on the prevalence of phenotypic AMR on samples from freeze-stored samples are unreliable, and only fresh samples should be used in such studies.
RESUMEN
Indiscriminate antimicrobial use (AMU) in animal production is a driver of antimicrobial resistance globally. There is a need to define sustainable interventions to reduce AMU in small-scale production systems, which currently represent the most widespread farming systems in South East Asia and many low- and middle-income countries. We conducted a before-and-after intervention study on a random sample of small-scale chicken farms in the Mekong Delta of Vietnam from 2016 to 2019. The study included a baseline followed by an intervention phase where farmers were provided with regular veterinary advice on flock health and husbandry, as well as antimicrobial replacement products. Of 102 recruited farms (raising >100 chickens per flock cycle), thirty-five (34.2%) entered the intervention phase, whilst the rest stopped raising chickens, mainly due to suboptimal flock performance. Through the implementation of our intervention, chicken flocks reduced levels of AMU by 66% [adjusted hazard ratio (HR) = 0.34; p = 0.002) from a baseline of 343.4 Animal Daily Doses per 1,000 chicken-days and decreased weekly mortality by 40% (adjusted HR = 0.60; p = 0.005) from a baseline mortality of 1.60 per 100 birds. Chicken bodyweight increased by 100 g (p = 0.002) in intervention flocks. Our findings demonstrate that the provision of veterinary advice can achieve substantial reductions in AMU in small-scale production systems without compromising flock health and productivity.