Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917011

RESUMEN

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Asunto(s)
Cricetulus , Fucosa , Fucosa/metabolismo , Animales , Células CHO , Glicosilación , Humanos , Trastuzumab/farmacología , Trastuzumab/metabolismo , Fucosiltransferasas/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos
2.
Bioconjug Chem ; 32(4): 746-754, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33689309

RESUMEN

Although peptide motifs represent the majority of cleavable linkers used in clinical-stage antibody-drug conjugates (ADCs), the sequences are often sensitive to cleavage by extracellular enzymes, such as elastase, which leads to systemic release of the cytotoxic payload. This action reduces the therapeutic index by causing off-target toxicities that can be dose-limiting. For example, a common side-effect of ADCs made using peptide-cleavable linkers is myelosuppression, including neutropenia. Only a few reports describe methods for optimizing peptide linkers to maintain efficient and potent tumor payload delivery while enhancing circulating stability. Herein, we address these critical limitations through the development of a tandem-cleavage linker strategy, where two sequential enzymatic cleavage events mediate payload release. We prepared dipeptides that are protected from degradation in the circulation by a sterically encumbering glucuronide moiety. Upon ADC internalization and lysosomal degradation, the monosaccharide is removed and the exposed dipeptide is degraded, which liberates the attached payload inside the target cell. We used CD79b-targeted monomethyl auristatin E (MMAE) conjugates as our model system and compared the stability, efficacy, and tolerability of ADCs made with tandem-cleavage linkers to ADCs made using standard technology with the vedotin linker. The results, where rat studies showed dramatically improved tolerability in the hematopoietic compartment, highlight the role that linker stability plays in efficacy and tolerability and also offer a means of improving an ADC's therapeutic index for improved patient outcomes.


Asunto(s)
Antineoplásicos/toxicidad , Antígenos CD79/toxicidad , Inmunoconjugados/toxicidad , Animales , Antineoplásicos/química , Antígenos CD79/química , Endocitosis , Femenino , Hidrólisis , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Cancer Ther ; 19(9): 1866-1874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32651200

RESUMEN

Trastuzumab and the related ADC, ado-trastuzumab emtansine (T-DM1), both target HER2-overexpressing cells. Together, these drugs have treatment indications in both early-stage and metastatic settings for HER2+ breast cancer. T-DM1 retains the antibody functionalities of trastuzumab and adds the potency of a cytotoxic maytansine payload. Interestingly, in the clinic, T-DM1 cannot always replace the use of trastuzumab plus chemotherapy administered together as single agents. We hypothesize that this failure may be due, in part, to the limited systemic exposure achieved by T-DM1 relative to trastuzumab because of toxicity-related dosing constraints on the ADC. We have developed a trastuzumab-based ADC site specifically conjugated to maytansine through a noncleavable linker. This construct, termed CAT-01-106, has a drug-to-antibody ratio (DAR) of 1.8, approximately half the average DAR of T-DM1, which comprises a mixture of antibodies variously conjugated with DARs ranging from 0 to 8. The high DAR species present in T-DM1 contribute to its toxicity and limit its clinical dose. CAT-01-106 showed superior in vivo efficacy compared with T-DM1 at equal payload dosing and was equally or better tolerated compared with T-DM1 at equal payload dosing up to 120 mg/kg in Sprague-Dawley rats and 60 mg/kg in cynomolgus monkeys. CAT-01-106 also showed improved pharmacokinetics in rats relative to T-DM1, with 40% higher ADC exposure levels. Together, the data suggest that CAT-01-106 may be sufficiently tolerable to enable clinical dosing at trastuzumab-equivalent exposure levels, combining the functions of both the antibody and the payload in one drug and potentially improving patient outcomes.


Asunto(s)
Ado-Trastuzumab Emtansina/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/administración & dosificación , Maitansina/química , Trastuzumab/química , Ado-Trastuzumab Emtansina/efectos adversos , Ado-Trastuzumab Emtansina/farmacocinética , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/efectos adversos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Macaca fascicularis , Dosis Máxima Tolerada , Ratas , Ratas Sprague-Dawley , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Antibodies (Basel) ; 7(4)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31544890

RESUMEN

We hypothesized that systematic liquid chromatography-tandem mass spectrometry investigations of an antibody-drug conjugate (ADC), its small and large molecular components, and surrogate small-molecule conjugates might comprise a simple and efficient approach for the extended characterization of ADCs. Furthermore, we envisioned that results from this work might allow us to assign specific composition changes in the ADC based on monoisotopic mass shifts of conjugatable modifications as detected in the surrogate small-molecule conjugates. We tested our hypothesis with a case study using an aldehyde-tag-based ADC conjugated to a noncleavable linker bearing a maytansine payload. Nearly quantitative bioconversion from cysteine to formylglycine was observed in the monoclonal antibody, and bioorthogonal conjugation was detected only on the formylglycine residues in the ADC. Using our method, both conjugatable and nonconjugatable modifications were discovered in the linker/payload; however, only conjugatable modifications were observed on the ADC. Based on these results, we anticipate that our approach to systematic mass spectrometric investigations can be successfully applied to other ADCs and therapeutic bioconjugates for investigational new drug (IND)-enabling extended characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA