Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273339

RESUMEN

Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Animales , Biomarcadores de Tumor/genética
2.
EMBO J ; 38(24): e102155, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31721250

RESUMEN

Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.


Asunto(s)
Proliferación Celular , Mitocondrias/metabolismo , Biogénesis de Organelos , Transducción de Señal , Animales , Ciclo del Ácido Cítrico/fisiología , Escherichia coli/metabolismo , Femenino , Metabolómica , Ratones , Ratones Transgénicos , Mitocondrias/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteómica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Opt Lett ; 47(13): 3303-3306, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776611

RESUMEN

The importance of cellular-scale mechanical properties is well-established, yet it is challenging to map subcellular elasticity in three dimensions. We present subcellular mechano-microscopy, an optical coherence microscopy (OCM)-based variant of three-dimensional (3-D) compression optical coherence elastography (OCE) that provides an elasticity system resolution of 5 × 5 × 5 µm: a 7-fold improvement in system resolution over previous OCE studies of cells. The improved resolution is achieved through a ∼5-fold improvement in optical resolution, refinement of the strain estimation algorithm, and demonstration that mechanical deformation of subcellular features provides feature resolution far greater than that demonstrated previously on larger features with diameter >250 µm. We use mechano-microscopy to image adipose-derived stem cells encapsulated in gelatin methacryloyl. We compare our results with compression OCE and demonstrate that mechano-microscopy can provide contrast from subcellular features not visible using OCE.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Metacrilatos , Elasticidad , Gelatina , Microscopía
4.
Hepatology ; 67(1): 216-231, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28833396

RESUMEN

Sorafenib remains the only approved drug for treating patients with advanced hepatocellular carcinoma (HCC). However, the therapeutic effect of sorafenib is transient, and patients invariably develop sorafenib resistance (SR). Recently, TYRO3, a member of the TYRO3-AXL-MER family of receptor tyrosine kinases, was identified as being aberrantly expressed in a significant proportion of HCC; however, its role in SR is unknown. In this study, we generated two functionally distinct sorafenib-resistant human Huh-7 HCC cell lines in order to identify new mechanisms to abrogate acquired SR as well as new potential therapeutic targets in HCC. Initially, we investigated the effects of a microRNA (miR), miR-7-5p (miR-7), in both in vitro and in vivo preclinical models of human HCC and identified miR-7 as a potent tumor suppressor of human HCC. We identified TYRO3 as a new functional target of miR-7, which regulates proliferation, migration, and invasion of Huh-7 cells through the phosphoinositide 3-kinase/protein kinase B pathway and is markedly elevated with acquisition of SR. Furthermore, miR-7 effectively silenced TYRO3 expression in both sorafenib-sensitive and sorafenib-resistant Huh-7 cells, inhibiting TYRO3/growth arrest specific 6-mediated cancer cell migration and invasion. CONCLUSION: We identified a mechanism for acquiring SR in HCC that is through the aberrant expression of the TYRO3/phosphoinositide 3-kinase/protein kinase B signal transduction pathway, and that can be overcome by miR-7 overexpression. Taken together, these data suggest a potential role for miR-7 as an RNA-based therapeutic to treat refractory and drug-resistant HCC. (Hepatology 2018;67:216-231).


Asunto(s)
Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/metabolismo , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Proteínas Tirosina Quinasas Receptoras/genética , Análisis de Varianza , Western Blotting , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/patología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , MicroARNs/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Niacinamida/farmacología , ARN Interferente Pequeño/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Sorafenib
5.
Biochem Cell Biol ; 95(2): 263-272, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28177770

RESUMEN

Liver fibrosis is now well recognized as the causative factor for increased mortality from complications associated with liver pathologies. Activated hepatic stellate cells (HSCs) play a critical role in the progression of liver fibrosis. Therefore, targeting these activated HSCs to prevent and (or) treat liver disease is a worthwhile approach to explore. In the present in vitro study, we investigated the use of bipotential murine oval liver cells (BMOL) in regulating the functions of activated HSCs to prevent progression of liver fibrosis. We used a conditioned medium-based approach to study the effect of BMOL cells on activated HSC survival and function. Our data showed that BMOL cells block the contraction of activated HSCs by inducing apoptosis of these cells. We demonstrated that BMOL cells secrete soluble factors, such as interleukin-6 (IL-6), which induced apoptosis of activated HSCs. Using both pharmacological and molecular inhibitor approaches, we further identified that IL-6-mediated activation of NF-κB-iNOS-NO-ROS signaling in activated HSCs plays a critical role in BMOL-cell-mediated apoptosis of activated HSCs. Thus, the present study provides an alternative cell-based therapeutic approach to treat liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Interleucina-6/farmacología , FN-kappa B/genética , Óxido Nítrico Sintasa de Tipo II/genética , Células Madre/metabolismo , Amidinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Arsenicales/farmacología , Bencilaminas/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Transformada , Células Cultivadas , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Imidazoles/farmacología , Interleucina-6/antagonistas & inhibidores , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Modelos Biológicos , FN-kappa B/agonistas , FN-kappa B/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Quinoxalinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/efectos de los fármacos
6.
J Biol Chem ; 290(46): 27928-38, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26432639

RESUMEN

The mammalian Hippo signaling pathway regulates cell growth and survival and is frequently dysregulated in cancer. YAP and TAZ are transcriptional coactivators that function as effectors of this signaling pathway. Aberrant YAP and TAZ activity is reported in several human cancers, and normally the expression and nuclear localization of these proteins is tightly regulated. We sought to establish whether a direct relationship exists between YAP and TAZ. Using knockdown and overexpression experiments we show YAP inversely regulates the abundance of TAZ protein by proteasomal degradation. Interestingly this phenomenon was uni-directional since TAZ expression did not affect YAP abundance. Structure/function analyses suggest that YAP-induced TAZ degradation is a consequence of YAP-targeted gene transcription involving TEAD factors. Subsequent investigation of known regulators of TAZ degradation using specific inhibitors revealed a role for heat shock protein 90 and glycogen synthase kinase 3 but not casein kinase 1 nor LATS in YAP-mediated TAZ loss. Importantly, this phenomenon is conserved from mouse to human; however, interestingly, different YAP isoforms varied in their ability to degrade TAZ. Since shRNA-mediated TAZ depletion in HeLa and D645 cells caused apoptotic cell death, we propose that isoform-specific YAP-mediated TAZ degradation may contribute to the contradicting roles reported for YAP overexpression. This study identifies a novel mechanism of TAZ regulation by YAP, which has significant implications for our understanding of Hippo pathway regulation, YAP-isoform specific signaling, and the role of these proteins in cell proliferation, apoptosis, and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosfoproteínas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
7.
Hepatology ; 62(4): 1272-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173184

RESUMEN

UNLABELLED: Liver progenitor cells (LPCs) are necessary for repair in chronic liver disease because the remaining hepatocytes cannot replicate. However, LPC numbers also correlate with disease severity and hepatocellular carcinoma risk. Thus, the progenitor cell response in diseased liver may be regulated to optimize liver regeneration and minimize the likelihood of tumorigenesis. How this is achieved is currently unknown. Human and mouse diseased liver contain two subpopulations of macrophages with different ontogenetic origins: prenatal yolk sac-derived Kupffer cells and peripheral blood monocyte-derived macrophages. We examined the individual role(s) of Kupffer cells and monocyte-derived macrophages in the induction of LPC proliferation using clodronate liposome deletion of Kupffer cells and adoptive transfer of monocytes, respectively, in the choline-deficient, ethionine-supplemented diet model of liver injury and regeneration. Clodronate liposome treatment reduced initial liver monocyte numbers together with the induction of injury and LPC proliferation. Adoptive transfer of monocytes increased the induction of liver injury, LPC proliferation, and tumor necrosis factor-α production. CONCLUSION: Kupffer cells control the initial accumulation of monocyte-derived macrophages. These infiltrating monocytes are in turn responsible for the induction of liver injury, the increase in tumor necrosis factor-α, and the subsequent proliferation of LPCs.


Asunto(s)
Comunicación Celular/fisiología , Macrófagos del Hígado/fisiología , Regeneración Hepática/fisiología , Hígado/citología , Monocitos/fisiología , Células Madre/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Hepatobiliary Pancreat Dis Int ; 15(2): 173-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27020634

RESUMEN

BACKGROUND: Differentiation of liver progenitor cells (LPCs) to functional hepatocytes holds great potential to develop new strategies for hepatocyte transplantation and the screening of drug-induced cytotoxicity. However, reports on the efficient and convenient hepatic differentiation of LPCs to hepatocytes are few. The present study aims to investigate the possibility of generating functional hepatocytes from LPCs in an indirect co-culture system. METHODS: Mouse LPCs were co-cultured in Transwell plates with an immortalized human hepatic stellate cell line (HSC-Li) we previously established. The morphology, expression of hepatic markers, and functions of mouse LPC-derived cells were monitored and compared with those of conventionally cultured LPCs. RESULTS: Co-culturing with HSC-Li cells induced differentiation of mouse LPCs into functional hepatocyte-like cells. The differentiated cells were morphologically transformed into hepatocyte-like cells 3 days after co-culture initiation. In addition, the differentiated cells expressed liver-specific genes and possessed hepatic functions, including glycogen storage, low-density lipoprotein uptake, albumin secretion, urea synthesis, and cytochrome P450 1A2 enzymatic activity. CONCLUSIONS: Our method, which employs indirect co-culture with HSC-Li cells, can efficiently induce the differentiation of LPCs into functional hepatocytes. This finding suggests that this co-culture system can be a useful method for the efficient generation of functional hepatocytes from LPCs.


Asunto(s)
Diferenciación Celular , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Comunicación Paracrina , Células Madre/metabolismo , Albúminas/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Forma de la Célula , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Regulación de la Expresión Génica , Glucógeno/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Hígado/citología , Masculino , Ratones Endogámicos C57BL , Fenotipo , Factores de Tiempo , Urea/metabolismo
9.
JHEP Rep ; 6(5): 101023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38681862

RESUMEN

Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah-/-/Rag2-/-/Il2rg-/- mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results: Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions: Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications: Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine.

10.
Clin Epigenetics ; 15(1): 73, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120619

RESUMEN

BACKGROUND: Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS: Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS: By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Metilación de ADN , Epigénesis Genética , Genes Supresores de Tumor , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
11.
Cell Genom ; 3(5): 100301, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37228755

RESUMEN

Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV) analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural variants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent human snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may change the way chronic liver disease patients are staged, surveilled, and risk stratified.

12.
J Hepatol ; 57(2): 337-43, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22521359

RESUMEN

BACKGROUND & AIMS: The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R), a multifunctional protein, plays a central role in intracellular targeting of lysosomal enzymes and control of insulin-like growth factor II (IGF-II) bioactivity. Importantly, the gene encoding this receptor is frequently inactivated in a wide range of malignant tumors including hepatocellular carcinomas. Thus, M6P/IGF2R is considered a putative liver tumor suppressor. The aim of this study was to establish the impact of the receptor on the invasive properties of liver cells. METHODS: Reconstitution experiments were performed by expression of wild type and mutant M6P/IGF2R in receptor-deficient FRL14 fetal rat liver cells. RNA interference was used to induce M6P/IGF2R downregulation in receptor-positive MIM-1-4 mouse hepatocytes. RESULTS: We show that the M6P/IGF2R status exerts a strong impact on the invasiveness of tumorigenic rodent liver cells. M6P/IGF2R-deficient fetal rat liver cells hypersecrete lysosomal cathepsins and penetrate extracellular matrix barriers in a cathepsin-dependent manner. Forced expression of M6P/IGF2R restores intracellular transport of cathepsins to lysosomes and concomitantly reduces the tumorigenicity and invasive potential of these cells. Conversely, M6P/IGF2R knock-down in receptor-positive mouse hepatocytes causes increased cathepsin secretion as well as enhanced cell motility and invasiveness. We also demonstrate that functional M6P-binding sites are important for the anti-invasive properties of M6P/IGF2R, whereas the capacity to bind IGF-II is dispensable for the anti-invasive activity of the receptor in liver cells. CONCLUSIONS: M6P/IGF2R restricts liver cell invasion by preventing the pericellular action of M6P-modified proteins.


Asunto(s)
Hepatocitos/patología , Neoplasias Hepáticas/patología , Manosafosfatos/metabolismo , Receptor IGF Tipo 2/fisiología , Animales , Línea Celular , Movimiento Celular , Proliferación Celular , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Lisosomas/enzimología , Ratones , Invasividad Neoplásica , Unión Proteica , Ratas
13.
Cytokine ; 60(2): 498-504, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22742857

RESUMEN

As TNF is one of the earliest signals that can be detected in the leukocyte-derived inflammatory cascade which drives subsequent cytokine production, we are interested in determining whether TNF is one of the initiating factors controlling liver remodeling and regeneration following chronic liver damage. One of the early responses is the expression of lymphotoxin-ß by hepatic progenitor oval cells. The aim of this study was to determine whether hepatic expression of LT-ß was controlled by TNF and to understand the basis of this regulation. We previously showed that LT-ß expression is transcriptionally controlled via the TNF-induced, inflammatory NF-κB pathway in T lymphocytes. Here we show that TNF is able to upregulate LT-ß expression in hepatic cells at the transcriptional level by the binding of NF-κB p50/p65 heterodimers and Ets1 to their respective sites in the LT-ß promoter.


Asunto(s)
Hepatocitos/metabolismo , Linfotoxina beta/genética , FN-kappa B/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Secuencia de Bases , Sitios de Unión , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Linfotoxina beta/metabolismo , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Factor de Transcripción Sp1/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
14.
Biomed Opt Express ; 13(9): 5050-5066, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36187256

RESUMEN

Hepatocellular carcinoma is one of the most lethal cancers worldwide, causing almost 700,000 deaths annually. It mainly arises from cirrhosis, which, in turn, results from chronic injury to liver cells and corresponding fibrotic changes. Although it is known that chronic liver injury increases the elasticity of liver tissue, the role of increased elasticity of the microenvironment as a possible hepatocarcinogen is yet to be investigated. One reason for this is the paucity of imaging techniques capable of mapping the micro-scale elasticity variation in liver and correlating that with cancerous mechanisms on the cellular scale. The clinical techniques of ultrasound elastography and magnetic resonance elastography typically do not provide micro-scale resolution, while atomic force microscopy can only assess the elasticity of a limited number of cells. We propose quantitative micro-elastography (QME) for mapping the micro-scale elasticity of liver tissue into images known as micro-elastograms, and therefore, as a technique capable of correlating the micro-environment elasticity of tissue with cellular scale cancerous mechanisms in liver. We performed QME on 13 freshly excised healthy and diseased mouse livers and present micro-elastograms, together with co-registered histology, in four representative cases. Our results indicate a significant increase in the mean (×6.3) and standard deviation (×6.0) of elasticity caused by chronic liver injury and demonstrate that the onset and progression of pathological features such as fibrosis, hepatocyte damage, and immune cell infiltration correlate with localized variations in micro-elastograms.

15.
Hepatology ; 52(1): 291-302, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20578156

RESUMEN

UNLABELLED: Liver progenitor cells (LPCs) represent the cell compartment facilitating hepatic regeneration during chronic injury while hepatocyte-mediated repair mechanisms are compromised. LPC proliferation is frequently observed in human chronic liver diseases such as hereditary hemochromatosis, fatty liver disease, and chronic hepatitis. In vivo studies have suggested that a tumor necrosis factor family member, tumor necrosis factor-like weak inducer of apoptosis (TWEAK), is promitotic for LPCs; whether it acts directly is not known. In our murine choline-deficient, ethionine-supplemented (CDE) model of chronic liver injury, TWEAK receptor [fibroblast growth factor-inducible 14 (Fn14)] expression in the whole liver is massively upregulated. We therefore set out to investigate whether TWEAK/Fn14 signaling promotes the regenerative response in CDE-induced chronic liver injury by mitotic stimulation of LPCs. Fn14 knockout (KO) mice showed significantly reduced LPC numbers and attenuated inflammation and cytokine production after 2 weeks of CDE feeding. The close association between LPC proliferation and activation of hepatic stellate cells in chronic liver injury prompted us to investigate whether fibrogenesis was also modulated in Fn14 KO animals. Collagen deposition and expression of key fibrogenesis mediators were reduced after 2 weeks of injury, and this correlated with LPC numbers. Furthermore, the injection of 2-week-CDE-treated wildtype animals with TWEAK led to increased proliferation of nonparenchymal pan cytokeratin-positive cells. Stimulation of an Fn14-positive LPC line with TWEAK led to nuclear factor kappa light chain enhancer of activated B cells (NFkappaB) activation and dose-dependent proliferation, which was diminished after targeting of the p50 NFkappaB subunit by RNA interference. CONCLUSION: TWEAK acts directly and stimulates LPC mitosis in an Fn14-dependent and NFkappaB-dependent fashion, and signaling via this pathway mediates the LPC response to CDE-induced injury and regeneration.


Asunto(s)
Regeneración Hepática , Mitosis , Células Madre/fisiología , Factores de Necrosis Tumoral/fisiología , Animales , Proliferación Celular , Deficiencia de Colina/metabolismo , Colágeno/metabolismo , Citocina TWEAK , Etionina/farmacología , Hígado/efectos de los fármacos , Hígado/lesiones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitógenos/farmacología , FN-kappa B/agonistas , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Proteínas Recombinantes/farmacología , Células Madre/efectos de los fármacos , Receptor de TWEAK , Factores de Necrosis Tumoral/farmacología
16.
Eur J Med Chem ; 217: 113353, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773263

RESUMEN

Advanced stage liver cancer is predominantly treated with the multi-kinase inhibitor sorafenib; however, this therapeutic agent lacks selectivity in its cytotoxic actions and is associated with poor survival outcomes. Herein we report the design and preparation of several thalidomide derivatives, including a variety of novel thioether-containing forms that are especially rare in the literature. Importantly, two of the derivatives described are potent antiproliferative agents with dose-dependent selectivity for tumorigenic liver progenitor cells (LPC) growth inhibition (up to 36% increase in doubling time at 10 µM) over non-tumorigenic cells (no effect at 10 µM). Furthermore, these putative anti-liver cancer agents were also found to be potent inhibitors of tumorigenic LPC migration. This report also describes these derivatives' effects on several key signalling pathways in our novel liver cell lines by immunofluorescence and AlphaLISA assays. Aryl thioether derivative 7f significantly reduced STAT3 phosphorylation (23%) and its nuclear localisation (16%) at 10 µM in tumorigenic LPCs, implicating the IL-6/JAK/STAT3 axis is central in the mode of action of our derivatives.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Factor de Transcripción STAT3/antagonistas & inhibidores , Sulfuros/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma Hepatocelular/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Hepáticas/metabolismo , Estructura Molecular , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Sulfuros/síntesis química , Sulfuros/química , Células Tumorales Cultivadas
17.
Stem Cell Res Ther ; 12(1): 429, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321089

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. METHODS: Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. RESULTS: hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNß in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. CONCLUSIONS: Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Carcinoma Hepatocelular/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Epiteliales , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , Células Madre
18.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638423

RESUMEN

Maraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supplemented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms. MVC reduced LPC numbers in CDE mice by 54%, with a smaller reduction seen in macrophages. Transcript and protein abundance of LPC-associated markers correlated with this reduction. The CDE diet activated phosphorylation of AKT and STAT3 and was inhibited by MVC. LPCs did not express Ccr5 in our model; in contrast, macrophages expressed high levels of this receptor, suggesting the effect of MVC is mediated by targeting macrophages. MVC reduced CD45+ cells and macrophage migration in liver and blocked the CDE-induced transition of liver macrophages from an M1- to M2-tumour-associated macrophage (TAM) phenotype. These findings suggest MVC has potential as a re-purposed therapeutic agent for treating chronic liver diseases where M2-TAM and LPC numbers are increased, and the incidence of HCC is enhanced.

19.
J Hepatol ; 53(3): 500-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20561705

RESUMEN

BACKGROUND & AIMS: Although a strong association between liver progenitor cells (LPCs) and inflammation exists in many chronic liver diseases, the exact role of the immune system in LPC-mediated hepatic regeneration remains unclear. A number of pro-inflammatory factors were identified in cytokine knockout mice in which the LPC response was attenuated but neither the mechanism nor the producing cells are known. METHODS: To identify the critical immune cells and cytokines required in the LPC response, we compared two diet-induced models of liver injury with two recently established transgenic models of immune-mediated hepatitis. RESULTS: Despite severe inflammation being observed in all models, the generation of LPCs was highly dependent on the cause and kinetics of liver damage. The LPC response was associated with an increase of macrophages and CD8(+) T cells but not natural killer cells. T cell-deficient mice were able to mount a LPC response, albeit delayed, suggesting that T cells are not essential. Mice mounting an LPC response showed elevated numbers of Kupffer cells and invading CX(3)CR1(high)CCR2(high) macrophages secreting persistent high levels of tumour necrosis factor alpha (TNFalpha), a major cytokine involved in the LPC response. CONCLUSIONS: Liver macrophages are an important determinant of LPC expansion during liver regeneration in models of diet- and immune-mediated liver injury. Invading macrophages in particular provide pro-mitogenic cytokines such as TNFalpha that underpin the process. LPC themselves are a source of chemokines (CCL2, CX(3)CL1) that attract infiltrating macrophages.


Asunto(s)
Hepatocitos/patología , Hepatopatías/inmunología , Hepatopatías/patología , Macrófagos/inmunología , Macrófagos/patología , Células Madre/patología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Receptor 1 de Quimiocinas CX3C , Enfermedad Crónica , Dieta/efectos adversos , Modelos Animales de Enfermedad , Hepatopatías/etiología , Hepatopatías/genética , Regeneración Hepática/genética , Regeneración Hepática/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CCR2/metabolismo , Receptores de Quimiocina/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Toxicol Appl Pharmacol ; 249(2): 148-57, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20831879

RESUMEN

Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4h of exposure to 0.5% w/v of chitosan nanoparticles (18±1 nm, 7.5±1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.


Asunto(s)
Quitosano/toxicidad , Hepatocitos/efectos de los fármacos , Alanina Transaminasa/metabolismo , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Relación Dosis-Respuesta a Droga , Hepatocitos/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Nanopartículas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA