Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(22): 10952-10961, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31088970

RESUMEN

Neuroinflammation is an important contributor to neuronal pathology and death in neurodegenerative diseases and neuronal injury. Therapeutic interventions blocking the activity of the inflammatory kinase IKKß, a key regulator of neuroinflammatory pathways, is protective in several animal models of neurodegenerative disease and neuronal injury. In Huntington's disease (HD), however, significant questions exist as to the impact of blocking or diminishing the activity of IKKß on HD pathology given its potential role in Huntingtin (HTT) degradation. In cell culture, IKKß phosphorylates HTT serine (S) 13 and activates HTT degradation, a process that becomes impaired with polyQ expansion. To investigate the in vivo relationship of IKKß to HTT S13 phosphorylation and HD progression, we crossed conditional tamoxifen-inducible IKKß knockout mice with R6/1 HD mice. Behavioral assays in these mice showed a significant worsening of HD pathological phenotypes. The increased behavioral pathology correlated with reduced levels of endogenous mouse full-length phospho-S13 HTT, supporting the importance of IKKß in the phosphorylation of HTT S13 in vivo. Notably, many striatal autophagy genes were up-regulated in HD vs. control mice; however, IKKß knockout partially reduced this up-regulation in HD, increased striatal neurodegeneration, and enhanced an activated microglial response. We propose that IKKß is protective in striatal neurons early in HD progression via phosphorylation of HTT S13. As IKKß is also required for up-regulation of some autophagy genes and HTT is a scaffold for selective autophagy, IKKß may influence autophagy through multiple mechanisms to maintain healthy striatal function, thereby reducing neuronal degeneration to slow HD onset.


Asunto(s)
Enfermedad de Huntington , Quinasa I-kappa B , Animales , Autofagia/genética , Cuerpo Estriado/citología , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Masculino , Ratones , Ratones Noqueados , Microglía/citología , Microglía/patología , Fosforilación/genética
2.
Proc Natl Acad Sci U S A ; 111(47): 16889-94, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385587

RESUMEN

Although dominant gain-of-function triplet repeat expansions in the Huntingtin (HTT) gene are the underlying cause of Huntington disease (HD), understanding the normal functions of nonmutant HTT protein has remained a challenge. We report here findings that suggest that HTT plays a significant role in selective autophagy. Loss of HTT function in Drosophila disrupts starvation-induced autophagy in larvae and conditional knockout of HTT in the mouse CNS causes characteristic cellular hallmarks of disrupted autophagy, including an accumulation of striatal p62/SQSTM1 over time. We observe that specific domains of HTT have structural similarities to yeast Atg proteins that function in selective autophagy, and in particular that the C-terminal domain of HTT shares structural similarity to yeast Atg11, an autophagic scaffold protein. To explore possible functional similarity between HTT and Atg11, we investigated whether the C-terminal domain of HTT interacts with mammalian counterparts of yeast Atg11-interacting proteins. Strikingly, this domain of HTT coimmunoprecipitates with several key Atg11 interactors, including the Atg1/Unc-51-like autophagy activating kinase 1 kinase complex, autophagic receptor proteins, and mammalian Atg8 homologs. Mutation of a phylogenetically conserved WXXL domain in a C-terminal HTT fragment reduces coprecipitation with mammalian Atg8 homolog GABARAPL1, suggesting a direct interaction. Collectively, these data support a possible central role for HTT as an Atg11-like scaffold protein. These findings have relevance to both mechanisms of disease pathogenesis and to therapeutic intervention strategies that reduce levels of both mutant and normal HTT.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila , Proteína Huntingtina , Ratones , Proteínas Asociadas a Microtúbulos/genética
3.
J Huntingtons Dis ; 7(2): 137-150, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29843246

RESUMEN

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disorder associated with aging, caused by an expanded polyglutamine (polyQ) repeat within the Huntingtin (HTT) protein. In HD, degeneration of the striatum and atrophy of the cortex are observed while cerebellum is less affected. OBJECTIVE: To test the hypothesis that HTT protein levels decline with age, which together with HTT mutation could influence disease progression. METHODS: Using whole brain cell lysates, a unique method of SDS-PAGE and western analysis was used to quantitate HTT protein, which resolves as a monomer and as a high molecular weight species that is modulated by the presence of transglutaminase 2. HTT levels were measured in striatum, cortex and cerebellum in congenic homozygous Q140 and HdhQ150 knock-in mice and WT littermate controls. RESULTS: Mutant HTT in both homozygous knock-in HD mouse models and WT HTT in control striatal and cortical tissues significantly declined in a progressive manner over time. Levels of mutant HTT in HD cerebellum remained high during aging. CONCLUSIONS: A general decline in mutant HTT levels in striatum and cortex is observed that may contribute to disease progression in homozygous knock-in HD mouse models through reduction of HTT function. In cerebellum, sustained levels of mutant HTT with aging may be protective to this tissue which is less overtly affected in HD.


Asunto(s)
Cuerpo Estriado/metabolismo , Progresión de la Enfermedad , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Envejecimiento , Animales , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Homocigoto , Proteína Huntingtina/genética , Masculino , Ratones Endogámicos C57BL , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
4.
Exp Neurol ; 254: 90-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24440640

RESUMEN

Assessing the efficacy of human stem cell transplantation in rodent models is complicated by the significant immune rejection that occurs. Two recent reports have shown conflicting results using neonatal tolerance to xenografts in rats. Here we extend this approach to mice and assess whether neonatal tolerance can prevent the rapid rejection of xenografts. In three strains of neonatal immune-intact mice, using two different brain transplant regimes and three independent stem cell types, we conclusively show that there is rapid rejection of the implanted cells. We also address specific challenges associated with the generation of humanized mouse models of disease.


Asunto(s)
Rechazo de Injerto/inmunología , Xenoinjertos/inmunología , Enfermedad de Huntington/terapia , Tolerancia Inmunológica/inmunología , Células-Madre Neurales/inmunología , Células-Madre Neurales/trasplante , Animales , Animales Recién Nacidos , Animales no Consanguíneos , Células Cultivadas , Cuerpo Estriado/citología , Modelos Animales de Enfermedad , Femenino , Rechazo de Injerto/prevención & control , Supervivencia de Injerto/inmunología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA