Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514170

RESUMEN

Carbon nanoparticles with antimicrobial properties, such as fullerenes, can be distinguished among the promising means of combating pathogens characterized by resistance to commercial antibiotics. However, they have a number of limitations for their use in medicine. In particular, the insolubility of carbon nanoparticles in water leads to a low biocompatibility and especially strong aggregation when transferred to liquid media. To overcome the negative factors and enhance the action of fullerenes in an extended range of applications, for example, in antimicrobial photodynamic therapy, we created new water-soluble complexes containing, in addition to C60 fullerene, purified detonation nanodiamonds (AC960) and/or polyvinylpyrrolidone (PVP). The in vitro antibacterial activity and toxicity to human cells of the three-component complex C60+AC960+PVP were analyzed in comparison with binary C60+PVP and C60+AC960. All complexes showed a low toxicity to cultured human skin fibroblasts and ECV lines, as well as significant antimicrobial activity, which depend on the type of microorganisms exposed, the chemical composition of the complex, its dosage and exposure time. Complex C60+PVP+AC960 at a concentration of 175 µg/mL showed the most stable and pronounced inhibitory microbicidal/microbiostatic effect.

2.
Membranes (Basel) ; 13(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37623774

RESUMEN

Aquivion®-type perfluorosulfonic acid membranes with a polytetrafluoroethylene backbone and short side chains with sulfonic acid groups at the ends have great prospects for operating in hydrogen fuel cells. To improve the conducting properties of membranes, various types of nanofillers can be used. We prepared compositional Aquivion®-type membranes with embedded detonation nanodiamond particles. Nanodiamonds were chemically modified with sulfonic acid groups to increase the entire amount of ionogenic groups involved in the proton conductivity mechanism in compositional membranes. We demonstrated the rise of proton conductivity at 0.5-2 wt.% of sulfonated nanodiamonds in membranes, which was accompanied by good mechanical properties. The basic structural elements, conducting channels in membranes, were not destroyed in the presence of nanodiamonds, as follows from small-angle neutron scattering data. The prepared compositional membranes can be used in hydrogen fuel cells to achieve improved performance.

3.
Biosensors (Basel) ; 12(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35049651

RESUMEN

A liquid biopsy based on circulating small extracellular vesicles (SEVs) has not yet been used in routine clinical practice due to the lack of reliable analytic technologies. Recent studies have demonstrated the great diagnostic potential of nanozyme-based systems for the detection of SEV markers. Here, we hypothesize that CD30-positive Hodgkin and Reed-Sternberg (HRS) cells secrete CD30 + SEVs; therefore, the relative amount of circulating CD30 + SEVs might reflect classical forms of Hodgkin lymphoma (cHL) activity and can be measured by using a nanozyme-based technique. A AuNP aptasensor analytics system was created using aurum nanoparticles (AuNPs) with peroxidase activity. Sensing was mediated by competing properties of DNA aptamers to attach onto surface of AuNPs inhibiting their enzymatic activity and to bind specific markers on SEVs surface. An enzymatic activity of AuNPs was evaluated through the color reaction. The study included characterization of the components of the analytic system and its functionality using transmission and scanning electron microscopy, nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), and spectrophotometry. AuNP aptasensor analytics were optimized to quantify plasma CD30 + SEVs. The developed method allowed us to differentiate healthy donors and cHL patients. The results of the CD30 + SEV quantification in the plasma of cHL patients were compared with the results of disease activity assessment by positron emission tomography/computed tomography (PET-CT) scanning, revealing a strong positive correlation. Moreover, two cycles of chemotherapy resulted in a statistically significant decrease in CD30 + SEVs in the plasma of cHL patients. The proposed AuNP aptasensor system presents a promising new approach for monitoring cHL patients and can be modified for the diagnostic testing of other diseases.


Asunto(s)
Enfermedad de Hodgkin , Nanopartículas del Metal , Oro , Enfermedad de Hodgkin/diagnóstico , Humanos , Antígeno Ki-1 , Tomografía Computarizada por Tomografía de Emisión de Positrones
4.
Membranes (Basel) ; 12(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36135846

RESUMEN

Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0-5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4-5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane-electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22-120 °C) compared to pure membranes without additives.

5.
Polymers (Basel) ; 13(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572666

RESUMEN

The aim of the study was to explore the polyethylene glycol-dextran two-phase polymer system formed in human plasma to isolate the exosome-enriched fraction of plasma extracellular nanovesicles (ENVs). Systematic analysis was performed to determine the optimal combination of the polymer mixture parameters (molecular mass and concentration) that resulted in phase separation. The separated phases were analyzed by nanoparticle tracking analysis and Raman spectroscopy. The isolated vesicles were characterized by atomic force microscopy and dot blotting. In conclusion, the protein and microRNA contents of the isolated ENVs were assayed by flow cytometry and by reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR), respectively. The presented results revealed the applicability of a new method for plasma ENV isolation and further analysis with a diagnostic purpose.

6.
J Am Chem Soc ; 129(32): 9941-52, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17658747

RESUMEN

Janus-type liquid-crystalline fullerodendrimers were synthesized via the 1,3-dipolar cycloaddtition of two mesomorphic dendrons and C60. By assembling poly(aryl ester) dendrons functionalized with cyanobiphenyl groups, displaying lamellar mesomorphism, with poly(benzyl ether) dendrons carrying alkyl chains, which display columnar mesomorphism, we could tailor by design the liquid-crystalline properties of the title compounds as a function of each dendron size. The liquid-crystalline properties were examined by polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Depending on the dendrimer generations, smectic (SmC and/or SmA phases) or columnar (Colr-c2mm or Colr-p2gg phases) mesomorphism was obtained. The supramolecular organization is governed by (1) the adequacy of the cross-sectional area of the dendrons, (2) the microsegregation of the dendrimer, (3) the deformation of the dendritic core, and (4) the dipolar interactions between the cyanobiphenyl groups. Comparison of the mesomorphic properties of two fullerodendrimers with those of model compounds (fullerene-free analogues) indicated that the C60 unit does not influence the type of mesophase that is formed. Molecular properties determined in solution (permanent dipole moment, specific dielectric polarization, molar Kerr constant) confirm that microsegregation persists in solution and strengthen the models proposed for the structure of the mesophases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA