Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(6): 148, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37178259

RESUMEN

Mutations in GJB2 (Gap junction protein beta 2) are the most common genetic cause of non-syndromic hereditary deafness in humans, especially the 35delG and 235delC mutations. Owing to the homozygous lethality of Gjb2 mutations in mice, there are currently no perfect mouse models carrying Gjb2 mutations derived from patients for mimicking human hereditary deafness and for unveiling the pathogenesis of the disease. Here, we successfully constructed heterozygous Gjb2+/35delG and Gjb2+/235delC mutant mice through advanced androgenic haploid embryonic stem cell (AG-haESC)-mediated semi-cloning technology, and these mice showed normal hearing at postnatal day (P) 28. A homozygous mutant mouse model, Gjb235delG/35delG, was then generated using enhanced tetraploid embryo complementation, demonstrating that GJB2 plays an indispensable role in mouse placenta development. These mice exhibited profound hearing loss similar to human patients at P14, i.e., soon after the onset of hearing. Mechanistic analyses showed that Gjb2 35delG disrupts the function and formation of intercellular gap junction channels of the cochlea rather than affecting the survival and function of hair cells. Collectively, our study provides ideal mouse models for understanding the pathogenic mechanism of DFNB1A-related hereditary deafness and opens up a new avenue for investigating the treatment of this disease.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Humanos , Ratones , Animales , Conexinas/genética , Conexina 26/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Audición
2.
Nat Commun ; 14(1): 2922, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217538

RESUMEN

During embryo development, DNA methylation is established by DNMT3A/3B and subsequently maintained by DNMT1. While much research has been done in this field, the functional significance of DNA methylation in embryogenesis remains unknown. Here, we establish a system of simultaneous inactivation of multiple endogenous genes in zygotes through screening for base editors that can efficiently introduce a stop codon. Embryos with mutations in Dnmts and/or Tets can be generated in one step with IMGZ. Dnmt-null embryos display gastrulation failure at E7.5. Interestingly, although DNA methylation is absent, gastrulation-related pathways are down-regulated in Dnmt-null embryos. Moreover, DNMT1, DNMT3A, and DNMT3B are critical for gastrulation, and their functions are independent of TET proteins. Hypermethylation can be sustained by either DNMT1 or DNMT3A/3B at some promoters, which are related to the suppression of miRNAs. The introduction of a single mutant allele of six miRNAs and paternal IG-DMR partially restores primitive streak elongation in Dnmt-null embryos. Thus, our results unveil an epigenetic correlation between promoter methylation and suppression of miRNA expression for gastrulation and demonstrate that IMGZ can accelerate deciphering the functions of multiple genes in vivo.


Asunto(s)
Metilación de ADN , MicroARNs , Animales , Ratones , Metilación de ADN/genética , Gastrulación/genética , Edición Génica , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Proteínas/metabolismo , Metilasas de Modificación del ADN/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
3.
Cell Discov ; 9(1): 82, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528081

RESUMEN

The Mulibrey (Muscle-liver-brain-eye) nanism caused by loss-of-function variants in TRIM37 gene is an autosomal recessive disorder characterized by severe growth failure and constrictive pericarditis. These patients also suffer from severe respiratory infections, co-incident with an increased mortality rate. Here, we revealed that TRIM37 variants were associated with recurrent infection. Trim37 FINmajor (a representative variant of Mulibrey nanism patients) and Trim37 knockout mice were susceptible to influenza virus infection. These mice showed defects in follicular helper T (TFH) cell development and antibody production. The effects of Trim37 on TFH cell differentiation relied on its E3 ligase activity catalyzing the K27/29-linked polyubiquitination of Bcl6 and its MATH domain-mediated interactions with Bcl6, thereby protecting Bcl6 from proteasome-mediated degradation. Collectively, these findings highlight the importance of the Trim37-Bcl6 axis in controlling the development of TFH cells and the production of high-affinity antibodies, and further unveil the immunologic mechanism underlying recurrent respiratory infection in Mulibrey nanism.

4.
Nat Commun ; 12(1): 5897, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625552

RESUMEN

Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.


Asunto(s)
Adenina , Edición Génica , Animales , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , gamma-Globinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA