Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749326

RESUMEN

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
Immunity ; 55(9): 1627-1644.e7, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35977543

RESUMEN

The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.


Asunto(s)
Apolipoproteína E4 , Glaucoma , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/uso terapéutico , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/uso terapéutico , Glaucoma/tratamiento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Ratones , Microglía/metabolismo
3.
Immunity ; 52(2): 222-240, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31924476

RESUMEN

Recent years have witnessed a revolution in our understanding of microglia biology, including their major role in the etiology and pathogenesis of neurodegenerative diseases. Technological advances have enabled the identification of microglial signatures in health and disease, including the development of new models to investigate and manipulate human microglia in vivo in the context of disease. In parallel, genetic association studies have identified several gene risk factors associated with Alzheimer's disease that are specifically or highly expressed by microglia in the central nervous system (CNS). Here, we discuss evidence for the effect of stress, diet, sleep patterns, physical activity, and microbiota composition on microglia biology and consider how lifestyle might influence an individual's predisposition to neurodegenerative diseases. We discuss how different lifestyles and environmental factors might regulate microglia, potentially leading to increased susceptibility to neurodegenerative disease, and we highlight the need to investigate the contribution of modern environmental factors on microglia modulation in neurodegeneration.


Asunto(s)
Estilo de Vida , Microglía/patología , Enfermedades Neurodegenerativas/patología , Envejecimiento/patología , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Ritmo Circadiano , Ejercicio Físico , Conducta Alimentaria , Predisposición Genética a la Enfermedad/genética , Humanos , Microbiota/genética , Microglía/inmunología , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Sueño , Estrés Psicológico/complicaciones
4.
Brain Behav Immun ; 111: 61-75, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001827

RESUMEN

Neuroligin-4 (NLGN4) loss-of-function mutations are associated with monogenic heritable autism spectrum disorder (ASD) and cause alterations in both synaptic and behavioral phenotypes. Microglia, the resident CNS macrophages, are implicated in ASD development and progression. Here we studied the impact of NLGN4 loss in a mouse model, focusing on microglia phenotype and function in both male and female mice. NLGN4 depletion caused lower microglia density, less ramified morphology, reduced response to injury and purinergic signaling specifically in the hippocampal CA3 region predominantly in male mice. Proteomic analysis revealed disrupted energy metabolism in male microglia and provided further evidence for sexual dimorphism in the ASD associated microglial phenotype. In addition, we observed impaired gamma oscillations in a sex-dependent manner. Lastly, estradiol application in male NLGN4-/- mice restored the altered microglial phenotype and function. Together, these results indicate that loss of NLGN4 affects not only neuronal network activity, but also changes the microglia state in a sex-dependent manner that could be targeted by estradiol treatment.


Asunto(s)
Trastorno del Espectro Autista , Masculino , Femenino , Animales , Ratones , Trastorno del Espectro Autista/genética , Microglía , Ratones Noqueados , Proteómica , Neuronas/fisiología
5.
Glia ; 70(4): 675-696, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35050555

RESUMEN

Neuropathic pain is a prevalent and debilitating chronic disease that is characterized by activation in glial cells in various pain-related regions within the central nervous system. Recent studies have suggested a sexually dimorphic role of microglia in the maintenance of neuropathic pain in rodents. Here, we utilized RNA sequencing analysis and in vitro primary cultures of microglia to identify whether there is a common neuropathic microglial signature and characterize the sex differences in microglia in pain-related regions in nerve injury and chemotherapy-induced peripheral neuropathy mouse models. While mechanical allodynia and behavioral changes were observed in all models, transcriptomic analysis of microglia revealed no common transcriptional changes in spinal and supraspinal regions and in the different neuropathic models. However, there was a substantial change in microglial gene expression within the ipsilateral lumbar spinal cord 7 days after chronic constriction injury (CCI) of the sciatic nerve. Both sexes upregulated genes associated with inflammation, phagosome, and lysosome activation, though males revealed a prominent global transcriptional shift not observed in female mice. Transcriptomic comparison between male spinal microglia after CCI and data from other nerve injury models and neurodegenerative microglia demonstrated a unique CCI-induced signature reflecting acute activation of microglia. Further, in vitro studies revealed that only male microglia from nerve-injured mice developed a reactive phenotype with increased phagocytotic activity. This study demonstrates a lack of a common neuropathic microglial signature and indicates distinct sex differences in spinal microglia, suggesting they contribute to the sex-specific pain processing following nerve injury.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Femenino , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Masculino , Ratones , Microglía/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/metabolismo , Médula Espinal/metabolismo , Transcriptoma
6.
Asian Pac J Allergy Immunol ; 32(4): 337-44, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25543045

RESUMEN

BACKGROUND: Although it is recognized that IL-33 plays a key role in the onset of asthma, it is currently unclear whether IL-33 acts on any other target cells besides mast cells and Th2 cells in asthma. We investigated that whether airway smooth muscle cells (ASMCs) could contribute to asthma via stimulation with IL-33. METHODS: To create a mouse model of acute asthma, murine ASMCs were isolated and cultured in vitro with IL-33. The ASMCs were divided into two groups, ASMCs from normal mice and ASMCs from ovalbumin-sensitized mice. The release of mouse KC was analyzed by PCR and ELISA. Immunocytochemical Staining of murine ASMCs for ST2 and IL-1RAcP was performed. RESULTS: IL-33 promoted KC expression, both in terms of mRNA and protien levels, in ASMCs from ovalbumin-sensitized mice. ST2 and IL-1RAcP were expressed in the membrane of ASMCs in ovalbumin-sensitized mice. CONCLUSION: IL-33 may contribute to the inflammation in the airways by acting on airway smooth muscle cells. IL-33 and ST2 may play important roles in allergic bronchial asthma.


Asunto(s)
Asma/inmunología , Quimiocinas/biosíntesis , Interleucinas/inmunología , Miocitos del Músculo Liso/inmunología , Animales , Asma/metabolismo , Asma/patología , Células Cultivadas , Quimiocinas/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunohistoquímica , Inflamación/inmunología , Inflamación/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Interleucina-8/biosíntesis , Interleucina-8/inmunología , Interleucinas/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Miocitos del Músculo Liso/metabolismo , Ovalbúmina/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina/inmunología
7.
J Hazard Mater ; 473: 134719, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797073

RESUMEN

Heavy metal cadmium (Cd) is widespread in contaminated soil and an important factor limiting plant growth. NO3- (nitrate) affects Cd uptake and thus changes Cd tolerance in plants; however, the underlying molecular regulatory mechanisms have not yet been elucidated. Here, we analyzed a novel gene, NtARF11 (auxin response factor), which regulates Cd tolerance in tobacco via the NO3- uptake pathway, through experiments with NtARF11-knockout and NtARF11-overexpression transgenic tobacco lines. NtARF11 was highly expressed under Cd stress in tobacco plants. Under Cd stress, overexpression of NtARF11 enhanced Cd tolerance in tobacco compared to that in wild-type tobacco, as shown by the low Cd concentration, high chlorophyll concentration, and low accumulation of reactive oxygen species in NtARF11-overexpressing tobacco. Moreover, low NO3- concentrations were observed in NtARF11-overexpressing tobacco plants. Further analyses revealed direct binding of NtARF11 to the promoter of the nitrate transporter NtNRT1.1, thereby negatively regulating its expression in tobacco. Notably, NtNRT1.1 knockout reduced NO3- uptake, which resulted in low Cd concentrations in tobacco. Altogether, these results demonstrate that the NtARF11-NtNRT1.1 module functions as a positive regulator of Cd tolerance by reducing the Cd uptake in tobacco, providing new insights for improving Cd tolerance of plants through genetic engineering.


Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Cadmio/toxicidad , Cadmio/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitratos/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Regiones Promotoras Genéticas
8.
Nat Commun ; 15(1): 3872, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719797

RESUMEN

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía , Fagocitosis , Placa Amiloide , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Femenino , Ratones , Masculino , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal , Humanos , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Hipocampo/patología
9.
Nat Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961225

RESUMEN

APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFß and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.

10.
J Huazhong Univ Sci Technolog Med Sci ; 33(2): 159-165, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23592123

RESUMEN

The neuroimaging results of drug-resistant epilepsy patients play an important role in the surgery decision and prognosis. The aim of this study was to evaluate the impact of these results on the efficacy of epilepay surgery, and then to explore surgical benefit for epilepsy patients with negative magnetic resonance (MR) images. Twenty-four subgroups describing the outcomes of 1475 epilepsy patients with positive-neuroimaging results and 696 patients with negative-neuroimaging results were involved in the meta-analysis. Overall, the odds of postoperational seizure-free rate were 2.03 times higher in magnetic resonance imaging-positive (MRI-positive) patients than in MRI-negative patients [odds ratio (OR)=2.03, 95% CI (1.67, 2.47), P<0.00001]. For patients with temporal lobe epilepsy (TLE), the odds were 1.76 times higher in those with MRI-positive results than in those with MRI-negative results [OR=1.76, 95% CI (1.34, 2.32), P<0.0001]. For patients with extra-temporal lobe epilepsy (extra-TLE), the odds were 2.88 times higher in MRI-positive patients than in MRI-negative patients [OR=2.88, 95% CI (1.53, 5.43), P=0.001]. It was concluded that the seizure-free rate of MRI-positive patients after surgery was higher than that of MRI-negative patients. For patients with negative results, an appropriate surgery should be concerned for TLE.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/cirugía , Imagen por Resonancia Magnética/estadística & datos numéricos , Procedimientos Neuroquirúrgicos/estadística & datos numéricos , Cirugía Asistida por Computador/estadística & datos numéricos , China/epidemiología , Epilepsia/epidemiología , Humanos , Prevalencia , Pronóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
11.
Nat Commun ; 14(1): 4286, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463881

RESUMEN

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-ß that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Linfocitos Intraepiteliales , Masculino , Ratones , Animales , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Subgrupos de Linfocitos T , Ratones Endogámicos C57BL
12.
Nat Neurosci ; 26(7): 1196-1207, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291336

RESUMEN

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Interferón gamma/metabolismo , Microglía/metabolismo , Transducción de Señal/genética , MicroARNs/genética , MicroARNs/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Placa Amiloide/metabolismo
13.
J Hazard Mater ; 432: 128701, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35313160

RESUMEN

Cadmium (Cd) is a harmful element that affects plant growth and development. Genetic improvements could be applied for enhancing Cd tolerance and accumulation in plants. Here, a novel Cd stress-induced gene, NtNRAMP3, was identified in tobacco. We constructed two NtNRAMP3-knockout (KO) tobacco lines using the CRISPR/Cas9 system, which enhanced Cd tolerance and Cd accumulation in tobacco leaves compared with those in the wildtype (WT). Subcellular localization analysis suggested that NtNRAMP3 is a tonoplast protein and GUS (ß-glucuronidase) histochemical analysis showed that NtNRAMP3 is highly expressed in the conductive tissue of leaves. NtNRAMP3-KO tobacco showed reduced Cd translation from vacuole to cytosol in leaves compared with the WT, and its vacuolar Cd concentration was significantly higher (20.78-22.81%) than that in the WT; in contrast, Cd concentration in the cytosol was reduced by 13.72-20.15%, preventing chlorophyll degradation and reducing reactive oxygen species accumulation in the leaves. Our findings demonstrate that NtNRAMP3 is involved in regulating Cd subcellular distribution (controlling Cd transport from vacuoles to the cytosol) and affects Cd tolerance and its accumulation in tobacco. This provides a key candidate gene to improve the phytoremediation efficiency of plants via genetic engineering.


Asunto(s)
Cadmio , Nicotiana , Cadmio/metabolismo , Cadmio/toxicidad , Mutación , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Vacuolas/metabolismo
14.
Acta Neuropathol Commun ; 10(1): 136, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076283

RESUMEN

Single cell RNA sequencing studies identified novel neurodegeneration-associated microglial (MGnD/DAM) subtypes activated around cerebral amyloid plaques. Micro-RNA (miR)-155 of the TREM2-APOE pathway was shown to be a key transcriptional regulator of MGnD microglial phenotype. Despite growing interest in studying manifestations of Alzheimer's disease (AD) in the retina, a CNS organ accessible to noninvasive high-resolution imaging, to date MGnD microglia have not been studied in the AD retina. Here, we discovered the presence and increased populations of Clec7a+ and Galectin-3+ MGnD microglia in retinas of transgenic APPSWE/PS1L166P AD-model mice. Conditionally targeting MGnD microglia by miR-155 ablation via the tamoxifen-inducible CreERT2 system in APPSWE/PS1L166P mice diminished retinal Clec7a+ and Galectin-3+ microglial populations while increasing homeostatic P2ry12+ microglia. Retinal MGnD microglia were often adhering to microvessels; their depletion protected the inner blood-retina barrier and reduced vascular amyloidosis. Microglial miR-155 depletion further limits retinal inflammation. Mass spectrometry analysis revealed enhanced retinal PI3K-Akt signaling and predicted IL-8 and Spp1 decreases in mice with microglia-specific miR-155 knockout. Overall, this study identified MGnD microglia in APPSWE/PS1L166P mouse retina. Transcriptional regulation of these dysfunctional microglia mitigated retinal inflammation and vasculopathy. The protective effects of microglial miR-155 ablation should shed light on potential treatments for retinal inflammation and vascular damage during AD and other ocular diseases.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Galectina 3/genética , Galectina 3/metabolismo , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Microglía/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Receptores Inmunológicos/metabolismo
15.
Neuron ; 109(10): 1657-1674.e7, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33831349

RESUMEN

The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease and directly influences tauopathy and tau-mediated neurodegeneration. ApoE4 has strong deleterious effects on both parameters. In the brain, apoE is produced and secreted primarily by astrocytes and by activated microglia. The cell-specific role of each form of apoE in the setting of neurodegeneration has not been determined. We generated P301S Tau/Aldh1l1-CreERT2/apoE3flox/flox or Tau/Aldh1l1-CreERT2/apoE4flox/flox mice. At 5.5 months of age, after the onset of tau pathology, we administered tamoxifen or vehicle and compared mice at 9.5 months of age. Removing astrocytic APOE4 markedly reduced tau-mediated neurodegeneration and decreased phosphorylated tau (pTau) pathology. Single-nucleus RNA sequencing analysis revealed striking gene expression changes in all cell types, with astrocytic APOE4 removal decreasing disease-associated gene signatures in neurons, oligodendrocytes, astrocytes, and microglia. Removal of astrocytic APOE4 decreased tau-induced synaptic loss and microglial phagocytosis of synaptic elements, suggesting a key role for astrocytic apoE in synaptic degeneration.


Asunto(s)
Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Fagocitosis , Tauopatías/metabolismo , Animales , Apolipoproteína E4/deficiencia , Apolipoproteína E4/genética , Apoptosis , Humanos , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Sinapsis/metabolismo , Sinapsis/patología , Tauopatías/patología , Transcriptoma , Proteínas tau/metabolismo
16.
J Clin Invest ; 130(4): 1912-1930, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917687

RESUMEN

Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we demonstrated a potent IFN immunogenicity of nucleic acid-containing (NA-containing) amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with ß-amyloidosis inside the brain and contributes to neuropathology. An IFN-stimulated gene (ISG) signature was detected in the brains of multiple murine Alzheimer disease (AD) models, a phenomenon also observed in WT mouse brain challenged with generic NA-containing amyloid fibrils. In vitro, microglia innately responded to NA-containing amyloid fibrils. In AD models, activated ISG-expressing microglia exclusively surrounded NA+ amyloid ß plaques, which accumulated in an age-dependent manner. Brain administration of rIFN-ß resulted in microglial activation and complement C3-dependent synapse elimination in vivo. Conversely, selective IFN receptor blockade effectively diminished the ongoing microgliosis and synapse loss in AD models. Moreover, we detected activated ISG-expressing microglia enveloping NA-containing neuritic plaques in postmortem brains of patients with AD. Gene expression interrogation revealed that IFN pathway was grossly upregulated in clinical AD and significantly correlated with disease severity and complement activation. Therefore, IFN constitutes a pivotal element within the neuroinflammatory network of AD and critically contributes to neuropathogenic processes.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Amiloide/inmunología , Interferón beta/inmunología , Sinapsis/inmunología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Animales , Complemento C3/inmunología , Modelos Animales de Enfermedad , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Interferón beta/efectos adversos , Interferón beta/farmacología , Ratones , Microglía/inmunología , Microglía/patología , Sinapsis/patología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
17.
Front Mol Neurosci ; 11: 65, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593493

RESUMEN

Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD) or low-fat diet (LFD) during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS). Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake) on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32) in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline.

18.
J Alzheimers Dis ; 60(s1): S41-S57, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28222529

RESUMEN

Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.


Asunto(s)
Trastornos Motores/etiología , Mutación/genética , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/genética , Enfermedades de la Unión Neuromuscular/etiología , Proteínas tau/genética , Factores de Edad , Animales , Axones/patología , Axones/ultraestructura , Modelos Animales de Enfermedad , Marcha/genética , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fuerza Muscular/genética , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Degeneración Nerviosa/patología , Desempeño Psicomotor/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Estadísticas no Paramétricas , Proteínas tau/metabolismo
19.
Front Mol Neurosci ; 10: 206, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713239

RESUMEN

Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.

20.
Neurobiol Aging ; 55: 115-122, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28434692

RESUMEN

Alzheimer's disease (AD) is strongly associated with microglia-induced neuroinflammation. Particularly, Aß plaque-associated microglia take on an "activated" morphology. However, the function and phenotype of these Aß plaque-associated microglia are not well understood. We show hyperreactivity of Aß plaque-associated microglia upon systemic inflammation in transgenic AD mouse models (i.e., 5XFAD and APP23). Gene expression profiling of Aß plaque-associated microglia (major histocompatibility complex II+ microglia) isolated from 5XFAD mice revealed a proinflammatory phenotype. The upregulated genes involved in the biological processes (gene ontology terms) included: "immune response to external stimulus" such as Axl, Cd63, Egr2, and Lgals3, "cell motility", such as Ccl3, Ccl4, Cxcr4, and Sdc3, "cell differentiation", and "system development", such as St14, Trpm1, and Spp1. In human AD tissue with similar Braak stages, expression of phagocytic markers and AD-associated genes, including HLA-DRA, APOE, AXL, TREM2, and TYROBP, was higher in laser-captured early-onset AD (EOAD) plaques than in late-onset AD plaques. Interestingly, the nonplaque parenchyma of both EOAD and late-onset AD brains, the expression of above-mentioned markers were similarly low. Here, we provide evidence that Aß plaque-associated microglia are hyperreactive in their immune response and phagocytosis in the transgenic AD mice as well as in EOAD brain tissue. We suggest that Aß plaque-associated microglia are the primary source of neuroinflammation related to AD pathology.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/inmunología , Microglía/inmunología , Placa Amiloide/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Animales , Apolipoproteínas E , Encéfalo/inmunología , Diferenciación Celular/genética , Movimiento Celular/genética , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Masculino , Glicoproteínas de Membrana , Ratones Transgénicos , Persona de Mediana Edad , Fagocitosis/genética , Fagocitosis/inmunología , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Receptores Inmunológicos , Tirosina Quinasa del Receptor Axl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA