Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(51): 23313-23320, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36524986

RESUMEN

The crystallization mechanism of zeolites remains unclarified to date because of lack of effective techniques in characterizing the local structures of amorphous precursors under synthetic conditions. Herein, in situ high-energy X-ray total scattering measurement with pair distribution function analysis is performed throughout the hydrothermal synthesis of SSZ-13 zeolite to investigate the amorphous-to-crystalline transformation at the sub-nano level in real time. Ordered four-membered rings (4Rs) are dominantly formed during the induction period, prior to the significant increase in the number of symmetric six- and eight-membered rings (6Rs and 8Rs) in the crystal growth stage. These preformed ordered 4Rs contribute to the formation of d6r and cha composite building units containing 6Rs and 8Rs with the assistance of the organic structure-directing agent, leading to the construction of embryonic zeolite crystallites, which facilitate the crystal growth through a particle attachment pathway. This work enriches the toolbox for better understanding the crystallization pathway of zeolites.


Asunto(s)
Zeolitas , Zeolitas/química , Rayos X , Difracción de Rayos X , Cristalización/métodos , Fenómenos Físicos
2.
J Am Chem Soc ; 142(8): 3931-3938, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32017544

RESUMEN

Improving the stability of porous materials for practical applications is highly challenging. Aluminosilicate zeolites are utilized for adsorptive and catalytic applications, wherein they are sometimes exposed to high-temperature steaming conditions (∼1000 °C). As the degradation of high-silica zeolites originates from the defect sites in their frameworks, feasible defect-healing methods are highly demanded. Herein, we propose a method for healing defects to create extremely stable high-silica zeolites. High-silica (SiO2/Al2O3 > 240) zeolites with *BEA-, MFI-, and MOR-type topologies could be stabilized by significantly reducing the number of defect sites via a liquid-mediated treatment without using additional silylating agents. Upon exposure to extremely high temperature (900-1150 °C) steam, the stabilized zeolites retain their crystallinity and micropore volume, whereas the parent commercial zeolites degrade completely. The proposed self-defect-healing method provides new insights into the migration of species through porous bodies and significantly advances the practical applicability of zeolites in severe environments.

3.
Proc Natl Acad Sci U S A ; 113(50): 14267-14271, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911823

RESUMEN

The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240-300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35159741

RESUMEN

The effect of external hydrostatic pressure on the hydrothermal synthesis of the microporous silicoaluminophosphate SAPO-18 has been explored. The crystallization of the SAPO-18 phase is inhibited at 150 °C under high pressures (200 MPa) when using relatively diluted synthesis mixtures. On the contrary, the use of concentrated synthesis mixtures allowed SAPO-18 to be obtained in all the studied conditions. The obtained solids were characterized with XRD, SEM, ICP-AES, TG and 27Al and 31P MAS NMR spectroscopy. The results highlight the importance of the external pressure effect on the hydrothermal synthesis of molecular sieves and its influence on the interaction between the organic molecule and the silicoaluminophosphate network.

5.
Chem Commun (Camb) ; 56(18): 2811-2814, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32031180

RESUMEN

The function of pressure has long been overlooked in the hydrothermal synthesis of zeolites, which is typically carried out under an autogenous pressure (below 2 MPa). We herein report, the first of its kind, a detailed investigation on the hydrothermal synthesis of zeolites under external high pressures, where crystallization behaviors contradicting the common observations were generated.

6.
J Biosci Bioeng ; 95(3): 225-30, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-16233397

RESUMEN

To investigate the effects of ATP, Mg2+, and a mixture of the two on the formation of large DNA aggregates induced by spermidine, we constructed novel phase diagrams of the spermidine/DNA/Tris-buffer system in the presence of these compounds. These diagrams reveal not only the difference in the inhibition of the aggregate formation between ATP and Mg2+ but also a type of buffering effect whereby the complex formation of ATP and Mg2+ diminishes their individual inhibitory actions. Furthermore, the equilibrium composition of ATP, spermidine, Mg2+, and their complexes in the liquid phase was estimated using the equilibrium constants for the complex formations and their mass balances. From this solution equilibrium analysis, the threshold condition for DNA aggregation is suggested. The phase diagrams and equilibrium analysis presented here are useful to predict the threshold of aggregation in a system similar to in vitro transcription. Finally, we recommend that region b in this paper, where the variation in the concentration of either ATP or Mg2+ had little effect on the DNA aggregation, should be used to establish the initial conditions of in vitro RNA synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA