Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31043531

RESUMEN

Virus-derived double-stranded RNA (dsRNA) molecules containing a triphosphate group at the 5' end are natural ligands of retinoic acid-inducible gene I (RIG-I). The cellular pathways and proteins induced by RIG-I are an essential part of the innate immune response against viral infections. Starting from a previously published RNA scaffold (3p10L), we characterized an optimized small dsRNA hairpin (called 3p10LG9, 25 nucleotides [nt] in length) as a highly efficient RIG-I activator. Dengue virus (DENV) infection in cell lines and primary human skin cells could be prevented and restricted through 3p10LG9-mediated activation of RIG-I. This antiviral effect was RIG-I and interferon signal dependent. The effect was temporary and was reversed above a saturating concentration of RIG-I ligand. This finding revealed an effective feedback loop that controls potentially damaging inflammatory effects of the RIG-I response, at least in immune cells. Our results show that the small RIG-I activator 3p10LG9 can confer short-term protection against DENV and can be further explored as an antiviral treatment in humans.IMPORTANCE Short hairpin RNA ligands that activate RIG-I induce antiviral responses in infected cells and prevent or control viral infections. Here, we characterized a new short hairpin RNA molecule with high efficacy in antiviral gene activation and showed that this molecule is able to control dengue virus infection. We demonstrate how structural modifications of minimal RNA ligands can lead to increased potency and a wider window of RIG-I-activating concentrations before regulatory mechanisms kick in at high concentrations. We also show that minimal RNA ligands induce an effective antiviral response in human skin dendritic cells and macrophages, which are the target cells of initial infection after the mosquito releases virus into the skin. Using short hairpin RNA as RIG-I ligands could therefore be explored as antiviral therapy.


Asunto(s)
Antivirales , Virus del Dengue/inmunología , Dengue/tratamiento farmacológico , ARN Bicatenario , Piel/inmunología , Antivirales/química , Antivirales/farmacología , Células Cultivadas , Proteína 58 DEAD Box , Dengue/inmunología , Dengue/patología , Humanos , ARN Bicatenario/química , ARN Bicatenario/farmacología , Receptores Inmunológicos , Piel/patología , Piel/virología
2.
Bioconjug Chem ; 30(3): 931-943, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30721034

RESUMEN

RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 µM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.


Asunto(s)
Orthomyxoviridae/efectos de los fármacos , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/farmacología , ARN Bicatenario/metabolismo , ARN Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Dicroismo Circular , Perros , Células de Riñón Canino Madin Darby , Electroforesis en Gel de Poliacrilamida Nativa , Conformación de Ácido Nucleico , Orthomyxoviridae/genética , Orthomyxoviridae/fisiología , ARN Bicatenario/química
3.
Protein Expr Purif ; 154: 52-61, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30261309

RESUMEN

Cellobiohydrolases catalyze the processive hydrolysis of cellulose into cellobiose. Here, a Trichoderma virens cDNA predicted to encode for cellobiohydrolase (cbhI) was cloned and expressed heterologously in Aspergillus niger. The cbhI gene has an open reading frame of 1518 bp, encoding for a putative protein of 505 amino acid residues with a calculated molecular mass of approximately 54 kDa. The predicted CbhI amino acid sequence has a fungal type carbohydrate binding module separated from a catalytic domain by a threonine rich linker region and showed high sequence homology with glycoside hydrolase family 7 proteins. The partially purified enzyme has an optimum pH of 4.0 with stability ranging from pH 3.0 to 6.0 and an optimum temperature of 60 °C. The partially purified CbhI has a specific activity of 4.195 Umg-1 and a low Km value of 1.88 mM when p-nitrophenyl-ß-D-cellobioside (pNPC) is used as the substrate. The catalytic efficiency (kcat/Km) was 5.68 × 10-4 mM-1s-1, which is comparable to the CbhI enzymes from Trichoderma viridae and Phanaerochaete chrysosporium. CbhI also showed activity towards complex substrates such as Avicel (0.011 Umg-1), which could be useful in complex biomass degradation. Interestingly, CbhI also exhibited a relatively high inhibition constant (Ki) for cellobiose with a value of 8.65 mM, making this enzyme more resistant to end-product inhibition compared to other fungal cellobiohydrolases.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Proteínas Fúngicas , Trichoderma , Aspergillus niger/enzimología , Aspergillus niger/genética , Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Trichoderma/enzimología , Trichoderma/genética
4.
Nucleic Acids Res ; 43(2): 1216-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25539915

RESUMEN

RIG-I and MDA5 are the major intracellular immune receptors that recognize viral RNA species and undergo a series of conformational transitions leading to the activation of the interferon-mediated antiviral response. However, to date, full-length RLRs have resisted crystallographic efforts and a molecular description of their activation pathways remains hypothetical. Here we employ hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to probe the apo states of RIG-I and MDA5 and to dissect the molecular details with respect to distinct RNA species recognition, ATP binding and hydrolysis and CARDs activation. We show that human RIG-I maintains an auto-inhibited resting state owing to the intra-molecular HEL2i-CARD2 interactions while apo MDA5 lacks the analogous intra-molecular interactions and therefore adopts an extended conformation. Our work demonstrates that RIG-I binds and responds differently to short triphosphorylated RNA and long duplex RNA and that sequential addition of RNA and ATP triggers specific allosteric effects leading to RIG-I CARDs activation. We also present a high-resolution protein surface mapping technique that refines the cooperative oligomerization model of neighboring MDA5 molecules on long duplex RNA. Taken together, our data provide a high-resolution view of RLR activation in solution and offer new evidence for the molecular mechanism of RLR activation.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Animales , Apoenzimas/química , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Medición de Intercambio de Deuterio , Humanos , Helicasa Inducida por Interferón IFIH1 , Espectrometría de Masas , Ratones , Modelos Moleculares , Poli I-C/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN/química , Receptores Inmunológicos
5.
Planta ; 242(1): 313-26, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25921693

RESUMEN

MAIN CONCLUSION: By genome-wide association study, QTLs for salt tolerance in rapeseed were detected, and a TSN1 ortholog was identified as a candidate gene responsible for genetic variation in cultivars. Dissecting the genomic regions governing abiotic stress tolerance is necessary for marker-assisted breeding to produce elite breeding lines. In this study, a world-wide collection of rapeseed was evaluated for salt tolerance. These rapeseed accessions showed a large variation for salt tolerance index ranging from 0.311 to 0.999. Although no significant correlation between salt tolerance and Na(+) content was observed, there was a significant negative correlation between shoot biomass production under a control condition and salt tolerance. These rapeseed accessions were genotyped by DArTseq for a total of 51,109 genetic markers, which were aligned with 'pseudomolecules' representative of the genome of rapeseed to locate their hypothetical order for association mapping. A total of 62 QTLs for salt tolerance, shoot biomass, and ion-homeostasis-related traits were identified by association mapping using both the P and Q+K models. Candidate genes located within the QTL regions were also shortlisted. Sequence analysis showed many polymorphisms for BnaaTSN1. Three of them in the coding region resulting in a premature stop codon or frameshift were found in most of the sensitive lines. Loss-of-function mutations showed a significant association with salt tolerance in B. napus.


Asunto(s)
Brassica napus/genética , Brassica napus/fisiología , Genes de Plantas , Variación Genética , Tolerancia a la Sal/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Biomasa , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Mapeo Cromosómico , Ecotipo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estudios de Asociación Genética , Marcadores Genéticos , Genética de Población , Desequilibrio de Ligamiento/genética , Datos de Secuencia Molecular , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Tolerancia a la Sal/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
6.
PeerJ ; 12: e16570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313025

RESUMEN

Background: Oil palm (Elaeis guineensis Jacq.) is one of the major oil-producing crops. Improving the quality and increasing the production yield of oil palm have been the primary focuses of both conventional and modern breeding approaches. However, the conventional breeding approach for oil palm is very challenging due to its longevity, which results in a long breeding cycle. Thus, the establishment of marker assisted selection (MAS) for oil palm breeding programs would speed up the breeding pipeline by generating new oil palm varieties that possess high commercial traits. With the decreasing cost of sequencing, Genotyping-by-sequencing (GBS) is currently feasible to many researchers and it provides a platform to accelerate the discovery of single nucleotide polymorphism (SNP) as well as insertion and deletion (InDel) markers for the construction of a genetic linkage map. A genetic linkage map facilitates the identification of significant DNA regions associated with the trait of interest via quantitative trait loci (QTL) analysis. Methods: A mapping population of 112 F1 individuals from a cross of Deli dura and Serdang pisifera was used in this study. GBS libraries were constructed using the double digestion method with HindIII and TaqI enzymes. Reduced representation libraries (RRL) of 112 F1 progeny and their parents were sequenced and the reads were mapped against the E. guineensis reference genome. To construct the oil palm genetic linkage map, informative SNP and InDel markers were used to discover significant DNA regions associated with the traits of interest. The nine traits of interest in this study were fresh fruit bunch (FFB) yield, oil yield (OY), oil to bunch ratio (O/B), oil to dry mesocarp ratio (O/DM) ratio, oil to wet mesocarp ratio (O/WM), mesocarp to fruit ratio (M/F), kernel to fruit ratio (K/F), shell to fruit ratio (S/F), and fruit to bunch ratio (F/B). Results: A total of 2.5 million SNP and 153,547 InDel markers were identified. However, only a subset of 5,278 markers comprising of 4,838 SNPs and 440 InDels were informative for the construction of a genetic linkage map. Sixteen linkage groups were produced, spanning 2,737.6 cM for the maternal map and 4,571.6 cM for the paternal map, with average marker densities of one marker per 2.9 cM and one per 2.0 cM respectively, were produced. A QTL analysis was performed on nine traits; however, only QTL regions linked to M/F, K/F and S/F were declared to be significant. Of those QTLs were detected: two for M/F, four for K/F and one for S/F. These QTLs explained 18.1-25.6% of the phenotypic variance and were located near putative genes, such as casein kinase II and the zinc finger CCCH domain, which are involved in seed germination and growth. The identified QTL regions for M/F, K/F and S/F from this study could be applied in an oil palm breeding program and used to screen palms with desired traits via marker assisted selection (MAS).


Asunto(s)
Fitomejoramiento , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Genotipo , Fitomejoramiento/métodos , Ligamiento Genético , ADN
7.
Theor Appl Genet ; 126(5): 1227-36, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23370467

RESUMEN

GLABRA1 (GL1) belongs to the group of R2R3-MYB transcription factors and is known to be essential for trichome initiation in Arabidopsis. In our previous study, we identified a GL1 ortholog in Brassica rapa as a candidate for the gene controlling leaf hairiness by QTL analysis and suggested that a 5-bp deletion (B-allele) and a 2-bp deletion (D-allele) in the exon 3 of BrGL1 and a non-synonymous SNP (C-allele) in the second nucleotide of exon 3 possibly cause leaf hairlessness. In this study, we transformed a B. rapa line having the B-allele with the A-allele (wild type) or the C-allele of BrGL1 under the control of the CaMV 35S promoter. The transgenic plants with the A-allele showed dense coverage of seedling tissues including stems, young leaves and hypocotyls with trichomes, whereas the phenotypes of those with the C-allele were unchanged. In order to obtain more information about allelic variation of GL1 in different plant lineages and its correlation with leaf hairiness, two GL1 homologs, i.e., RsGL1a and RsGL1b, in Raphanus sativus were analyzed. Allelic variation of RsGL1a between a hairless line and a hairy line was completely associated with hairiness in their BC1F1 population. Comparison of the full-length of RsGL1a in the hairless and hairy lines showed great variation of nucleotides in the 3' end, which might be essential for its function and expression.


Asunto(s)
Cartilla de ADN/genética , Genes de Plantas/genética , Variación Genética/genética , Hojas de la Planta/genética , Raphanus/genética , Verduras/genética , Agrobacterium/fisiología , Southern Blotting , ADN de Plantas/genética , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , ARN Mensajero/genética , ARN de Planta/genética , Raphanus/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Vaccine ; 38(6): 1286-1290, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31924429

RESUMEN

The H9N2 avian influenza viruses cause significant economic losses in poultry worldwide and could potentially cause human pandemic. Currently, the available vaccines have limited efficacy due to antigenic drift of H9N2. To improve vaccine efficacy, we developed monovalent vaccine strain via the modification of neutralizing epitopes on hemagglutinin (HA) to broaden the protection against H9N2 viruses. In this study, single and multiple mutation were introduced to amino acid at position 148, 150 (site I) and 183, 186, 188 (site II) on the full-length HA gene of H9N2 strain (A/Hong Kong/33982/2009). These mutant HA constructs were displayed on the baculovirus surface (BacH9), and evaluated for their cross-protective efficacy against H9N2 viruses in a mouse model. Our findings indicate that mice immunized with multiple BacH9 mutant constructs (148-150 183 and 186) induced cross-protective immunity against circulating H9N2 in the viral challenge study and prove to be a promising vaccine candidate for H9N2.


Asunto(s)
Protección Cruzada , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Pollos , Epítopos/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Ratones , Mutación , Infecciones por Orthomyxoviridae/prevención & control
9.
FEBS Lett ; 593(21): 3003-3014, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31369683

RESUMEN

The cytoplasmic immune sensor RIG-I detects viral RNA and initiates an antiviral immune response upon activation. It has become a potential target for vaccination and immunotherapies. To develop the smallest but potent immunomodulatory RNA (immRNAs) species, we performed structure-guided RNA design and used biochemical, structural, and cell-based methods to select and characterize the immRNAs. We demonstrated that inserting guanosine at position 9 to the 10mer RNA hairpin (3p10LG9) activates RIG-I more robustly than the parental RNA. 3p10LG9 interacts strongly with the RIG-I helicase-CTD RNA sensing module and disrupts the auto-inhibitory interaction between the HEL2i and CARDs domains. We further showed that 3p10LA9 has a stronger cellular activity than 3p10LG9. Collectively, purine insertion at position 9 of the immRNA species triggered more robust activation of RIG-1.


Asunto(s)
Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/metabolismo , ARN Interferente Pequeño/farmacología , ARN Viral/inmunología , Sustitución de Aminoácidos , Citosina/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Unión Proteica , Dominios Proteicos , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Receptores Inmunológicos , Transducción de Señal , Relación Estructura-Actividad
10.
Front Immunol ; 9: 1379, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29973930

RESUMEN

Emerging and re-emerging viruses pose a significant public health challenge around the world, among which RNA viruses are the cause of many major outbreaks of infectious diseases. As one of the early lines of defense in the human immune system, RIG-I-like receptors (RLRs) play an important role as sentinels to thwart the progression of virus infection. The activation of RLRs leads to an antiviral state in the host cells, which triggers the adaptive arm of immunity and ultimately the clearance of viral infections. Hence, RLRs are promising targets for the development of pan-antivirals and vaccine adjuvants. Here, we discuss the opportunities and challenges of developing RLR agonists into antiviral therapeutic agents and vaccine adjuvants against a broad range of viruses.

11.
Biomed Res Int ; 2014: 467395, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25177691

RESUMEN

Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na(+) content, and Na(+)/K(+) and Na(+)/Ca(2+) ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement.


Asunto(s)
Brassica napus/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , ARN de Planta/genética , Tolerancia a la Sal/fisiología , Factores de Transcripción/metabolismo , Transcriptoma/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Salinidad , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA