Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Virol J ; 13: 2, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26728921

RESUMEN

BACKGROUND: Retinoblastoma like protein 2 (RBL2) or p130 is a member of the pocket protein family, which is infrequently mutated in human tumours. Its expression is posttranscriptionally regulated and largely G0 restricted. We have previously shown that E6/E7 oncoproteins encoded by human papillomavirus (HPV) type 16, which is a high-risk type for cervical cancer development, must target p130 to promote the host cell to exit from quiescence (G0) state and enter S phase of the cell cycle. P130 is associated with the DREAM (DP, RB-like, E2F and MuvB) complex in G0/G1, which prevents S phase progression by repressing transcription of E2F-regulated genes. E7 proteins could potentially disrupt the p130-DREAM complex through two known mechanisms: direct interaction with p130 or induction of cyclin dependent kinase 2 (CDK2) phosphorylation by interacting with its inhibitor, p21(CIP1). METHODS: In this study we have used p130 mutants deficient in binding the E7 LXCXE domain (p130mE7), unphosphorylatable by CDK2 (p130PM22) or a combination of both (p130PM22/mE7) to investigate these mechanisms used by E7 proteins to disrupt the p130-DREAM complex and promote cell cycle progression. RESULTS: We found that HPV16 E7 binding to p130 through its LXCXE domain was absolutely required to disrupt p130-DREAM to promote S phase of the cell cycle, as HPV16 E7 was unable to suppress p130mE7 but could suppress p130PM22. In contrast, the E7 protein encoded by a cutaneous HPV type that lacks a functional LXCXE domain, HPV 48 E7, was also able to disrupt p130-DREAM to promote cell cycling, but through the alternative mechanism. Thus, HPV48 E7 could suppress a cell cycle block imposed by p130mE7, but was unable to suppress p130PM22. CONCLUSIONS: Overall, these results indicate that suppression of p130 is required for HPV-induced cell cycling, and that different HPV E7 proteins can use alternative mechanisms to achieve this.


Asunto(s)
Alphapapillomavirus/clasificación , Alphapapillomavirus/metabolismo , Puntos de Control del Ciclo Celular , Proteínas E7 de Papillomavirus/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Mutación , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína p130 Similar a la del Retinoblastoma/química , Proteína p130 Similar a la del Retinoblastoma/genética
2.
J Agric Food Chem ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364532

RESUMEN

Trehalose, a versatile disaccharide renowned for its unique physical and chemical properties, finds extensive application in the food, pharmaceutical, and cosmetic industries. While conventional extraction methods face challenges, enzymatic conversion offers a promising avenue for the industrial production of trehalose. This study delves into a novel synthetic approach utilizing a recombinant enzyme, merging the thermostable trehalose synthase domain from Thermus thermophiles with a cellulose binding domain. Immobilization of this enzyme on cellulose matrices enhances stability and facilitates product purification, opening avenues for efficient enzymatic synthesis. Notably, the engineered enzyme demonstrates additional activity, converting sucrose into trehalulose. This dual functionality, combined with immobilization strategies, holds immense potential for scalable and cost-effective production of trehalose and trehalulose, offering promising prospects in various industrial and biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA