Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Plant Cell ; 36(10): 4404-4425, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38917246

RESUMEN

Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Giberelinas , Lactonas , Malus , Proteínas de Plantas , Malus/metabolismo , Malus/genética , Antocianinas/metabolismo , Giberelinas/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Compuestos Heterocíclicos con 3 Anillos/metabolismo
2.
Plant J ; 119(4): 1859-1879, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923625

RESUMEN

In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.


Asunto(s)
Antocianinas , Ascomicetos , Frutas , Regulación de la Expresión Génica de las Plantas , Malus , Enfermedades de las Plantas , Proteínas de Plantas , Ácido Salicílico , Malus/microbiología , Malus/genética , Malus/metabolismo , Ácido Salicílico/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/microbiología , Frutas/metabolismo , Frutas/genética , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Plant J ; 115(6): 1599-1618, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37277961

RESUMEN

Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.


Asunto(s)
Malus , Malus/genética , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Planta ; 259(6): 125, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634979

RESUMEN

MAIN CONCLUSION: Overexpression of MdLBD3 in Arabidopsis reduced sensitivity to salt and drought stresses and was instrumental in promoting early flowering. Salt and drought stresses have serious effects on plant growth. LATERAL ORGAN BOUNDARY DOMAIN (LBD) proteins are a plant-specific transcription factors (TFs) family and play important roles in plants in resisting to abiotic stress. However, about the function of LBDs in apple and other woody plants is little known. In this study, protein sequences of the LBD family TFs in apples were identified which contained conserved LOB domains. The qRT-PCR analysis showed that the MdLBD3 gene was widely expressed in various tissues and organs. The subcellular localization assay showed that the MdLBD3 protein was localized in the nucleus. Ectopic expression of MdLBD3 in Arabidopsis positively regulated its salt and drought resistance, and promoted early flowering. Collectively, these results showed that MdLBD3 improved the abiotic stress resistance, plant growth and development. Overall, this study provided a new gene for breeding that can increase the abiotic stress tolerance in apple.


Asunto(s)
Arabidopsis , Malus , Factores de Transcripción , Sequías , Fitomejoramiento , Estrés Salino , Clonación Molecular
5.
New Phytol ; 243(3): 997-1016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849319

RESUMEN

Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Giberelinas , Malus , Oxilipinas , Proteínas de Plantas , Transducción de Señal , Ubiquitinación , Oxilipinas/metabolismo , Malus/genética , Malus/metabolismo , Ciclopentanos/metabolismo , Ubiquitinación/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Proteolisis/efectos de los fármacos , Antocianinas/metabolismo , Unión Proteica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Modelos Biológicos
6.
Plant Physiol ; 193(2): 1652-1674, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37392474

RESUMEN

Although brassinolide (BR) and jasmonic acid (JA) play essential roles in the regulation of cold stress responses, the molecular basis of their crosstalk remains elusive. Here, we show a key component of BR signaling in apple (Malus × domestica), BR INSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1)-INTERACTING MYC-LIKE PROTEIN1 (MdBIM1), increases cold tolerance by directly activating expression of C-REPEAT BINDING FACTOR1 (MdCBF1) and forming a complex with C-REPEAT BINDING FACTOR2 (MdCBF2) to enhance MdCBF2-activated transcription of cold-responsive genes. Two repressors of JA signaling, JAZMONATE ZIM-DOMAIN1 (MdJAZ1) and JAZMONATE ZIM-DOMAIN2 (MdJAZ2), interact with MdBIM1 to integrate BR and JA signaling under cold stress. MdJAZ1 and MdJAZ2 reduce MdBIM1-promoted cold stress tolerance by attenuating transcriptional activation of MdCBF1 expression by MdBIM1 and interfering with the formation of the MdBIM1-MdCBF2 complex. Furthermore, the E3 ubiquitin ligase ARABIDOPSIS TÓXICOS en LEVADURA73 (MdATL73) decreases MdBIM1-promoted cold tolerance by targeting MdBIM1 for ubiquitination and degradation. Our results not only reveal crosstalk between BR and JA signaling mediated by a JAZ-BIM1-CBF module but also provide insights into the posttranslational regulatory mechanism of BR signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Malus , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Malus/genética , Malus/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Physiol ; 191(3): 1771-1788, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36617241

RESUMEN

A key function of SUMOylation is the coordinated modification of numerous proteins to optimize plant growth and resistance to environmental stress. Plant cuticular wax is deposited on the surface of primary plant organs to form a barrier that provides protection against changes in terrestrial environments. Many recent studies have examined cuticular wax biosynthetic pathways and regulation. However, whether SUMOylation is involved in the regulation of cuticle wax deposition at the posttranslational level remains unclear. Here, we demonstrate that a small ubiquitin-like modifier (SUMO) E3 ligase, SAP AND MIZ1 DOMAIN CONTAINING LIGASE1 (MdSIZ1), regulates wax accumulation and cuticle permeability in apple (Malus domestica Borkh), SUMO E2 CONJUGATING ENZYME 1(MdSCE1) physically interacts with MdMYB30, a transcription factor involved in the regulation of cuticle wax accumulation. MdSIZ1 mediates the SUMOylation and accumulation of MdMYB30 by inhibiting its degradation through the 26S proteasome pathway. Furthermore, MdMYB30 directly binds to the ß-KETOACYL-COA SYNTHASE 1 (MdKCS1) promoter to activate its expression and promote wax biosynthesis. These findings indicate that the MdSIZ1-MdMYB30-MdKCS1 module positively regulates cuticular wax biosynthesis in apples. Overall, the findings of our study provide insights into the regulation pathways involved in cuticular wax biosynthesis.


Asunto(s)
Malus , Malus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Regulación de la Expresión Génica de las Plantas , Ceras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Cell Environ ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049759

RESUMEN

Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.

9.
Plant Cell Environ ; 47(5): 1668-1684, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282271

RESUMEN

Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.


Asunto(s)
Sequías , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
10.
Physiol Plant ; 176(2): e14288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644531

RESUMEN

Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas del Choque Térmico HSP20 , Malus , Filogenia , Enfermedades de las Plantas , Proteínas de Plantas , Malus/genética , Malus/microbiología , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas del Choque Térmico HSP20/genética , Proteínas del Choque Térmico HSP20/metabolismo , Ascomicetos/fisiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Familia de Multigenes , Resistencia a la Enfermedad/genética , Antocianinas/metabolismo
11.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396875

RESUMEN

Plants possess the remarkable ability to sense detrimental environmental stimuli and launch sophisticated signal cascades that culminate in tailored responses to facilitate their survival, and transcription factors (TFs) are closely involved in these processes. Phytochrome interacting factors (PIFs) are among these TFs and belong to the basic helix-loop-helix family. PIFs are initially identified and have now been well established as core regulators of phytochrome-associated pathways in response to the light signal in plants. However, a growing body of evidence has unraveled that PIFs also play a crucial role in adapting plants to various biological and environmental pressures. In this review, we summarize and highlight that PIFs function as a signal hub that integrates multiple environmental cues, including abiotic (i.e., drought, temperature, and salinity) and biotic stresses to optimize plant growth and development. PIFs not only function as transcription factors to reprogram the expression of related genes, but also interact with various factors to adapt plants to harsh environments. This review will contribute to understanding the multifaceted functions of PIFs in response to different stress conditions, which will shed light on efforts to further dissect the novel functions of PIFs, especially in adaption to detrimental environments for a better survival of plants.


Asunto(s)
Proteínas de Arabidopsis , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Transducción de Señal/genética , Regulación de la Expresión Génica de las Plantas , Plantas/genética , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
12.
J Integr Plant Biol ; 66(7): 1270-1273, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38888226

RESUMEN

The E3 ubiquitin ligase MdSINA11 targets the jasmonate ZIM domain protein MdJAZ2 for ubiquitination and degradation through the 26S proteasome pathway, thereby initiating jasmonate signaling and jasmonic acid-triggered anthocyanin biosynthesis in apple.


Asunto(s)
Ciclopentanos , Malus , Oxilipinas , Proteínas de Plantas , Transducción de Señal , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transducción de Señal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malus/genética , Malus/metabolismo , Regulación de la Expresión Génica de las Plantas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
13.
J Integr Plant Biol ; 66(2): 265-284, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38284786

RESUMEN

Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.


Asunto(s)
Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Plant J ; 111(2): 457-472, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35560993

RESUMEN

Jasmonic acid (JA) induces chlorophyll degradation and leaf senescence. B-box (BBX) proteins play important roles in the modulation of leaf senescence, but the molecular mechanism of BBX protein-mediated leaf senescence remains to be further studied. Here, we identified the BBX protein MdBBX37 as a positive regulator of JA-induced leaf senescence in Malus domestica (apple). Further studies showed that MdBBX37 interacted with the senescence regulatory protein MdbHLH93 to enhance its transcriptional activation on the senescence-associated gene MdSAG18, thereby promoting leaf senescence. Moreover, the JA signaling repressor MdJAZ2 interacted with MdBBX37 and interfered with the interaction between MdBBX37 and MdbHLH93, thereby negatively mediating MdBBX37-promoted leaf senescence. In addition, the E3 ubiquitin ligase MdSINA3 delayed MdBBX37-promoted leaf senescence through targeting MdBBX37 for degradation. The MdJAZ2-MdBBX37-MdbHLH93-MdSAG18 and MdSINA3-MdBBX37 modules realized the precise modulation of JA on leaf senescence. In parallel, our data demonstrate that MdBBX37 was involved in abscisic acid (ABA)- and ethylene-mediated leaf senescence through interacting with the ABA signaling regulatory protein MdABI5 and ethylene signaling regulatory protein MdEIL1, respectively. Taken together, our results not only reveal the role of MdBBX37 as an integration node in JA-, ABA- and ethylene-mediated leaf senescence, but also provide new insights into the post-translational modification of BBX proteins.


Asunto(s)
Malus , Ácido Abscísico/metabolismo , Ciclopentanos , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Oxilipinas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescencia de la Planta , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
New Phytol ; 239(4): 1332-1352, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37235698

RESUMEN

Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.


Asunto(s)
Arabidopsis , Malus , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitinación , Malus/genética , Malus/metabolismo , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
New Phytol ; 239(3): 1014-1034, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36747049

RESUMEN

Malic acid accumulation in the vacuole largely determines acidity and perception of sweetness of apple. It has long been observed that reduction in malate level is associated with increase in ethylene production during the ripening process of climacteric fruits, but the molecular mechanism linking ethylene to malate reduction is unclear. Here, we show that ethylene-modulated WRKY transcription factor 31 (WRKY31)-Ethylene Response Factor 72 (ERF72)-ALUMINUM ACTIVATED MALATE TRANSPORTER 9 (Ma1) network regulates malate accumulation in apple fruit. ERF72 binds to the promoter of ALMT9, a key tonoplast transporter for malate accumulation of apple, transcriptionally repressing ALMT9 expression in response to ethylene. WRKY31 interacts with ERF72, suppressing its transcriptional inhibition activity on ALMT9. In addition, WRKY31 directly binds to the promoters of ERF72 and ALMT9, transcriptionally repressing and activating ERF72 and ALMT9, respectively. The expression of WRKY31 decreases in response to ethylene, lowering the transcription of ALMT9 directly and via its interactions with ERF72. These findings reveal that the regulatory complex WRKY31 forms with ERF72 responds to ethylene, linking the ethylene signal to ALMT9 expression in reducing malate transport into the vacuole during fruit ripening.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Aluminio/metabolismo , Frutas/genética , Frutas/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Physiol ; 189(2): 1005-1020, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35218363

RESUMEN

Ubiquitination is an important post-translational protein modification. Although BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC and TRANSCRIPTION ADAPTOR PUTATIVE ZINC FINGER domain protein 2 (BT2) is involved in many biological processes, its role in apple (Malus domestic) root formation remains unclear. Here, we revealed that MdBT2 inhibits adventitious root (AR) formation through interacting with AUXIN RESPONSE FACTOR8 (MdARF8) and INDOLE-3-ACETIC ACID INDUCIBLE3 (MdIAA3). MdBT2 facilitated MdARF8 ubiquitination and degradation through the 26S proteasome pathway and negatively regulated GRETCHEN HAGEN 3.1 (MdGH3.1) and MdGH3.6 expression. MdARF8 regulates AR formation through inducing transcription of MdGH3s (MdGH3.1, MdGH3.2, MdGH3.5, and MdGH3.6). In addition, MdBT2 facilitated MdIAA3 stability and slightly promoted its interaction with MdARF8. MdIAA3 inhibited AR formation by forming heterodimers with MdARF8 as well as other MdARFs (MdARF5, MdARF6, MdARF7, and MdARF19). Our findings reveal that MdBT2 acts as a negative regulator of AR formation in apple.


Asunto(s)
Malus , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Ubiquitinación
18.
Plant Physiol ; 188(4): 2342-2363, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34983053

RESUMEN

Light affects many physiological and developmental processes of plants by regulating the expression and activity of light-responsive proteins. Among them, phytochrome interacting factors (PIFs) play pivotal roles in the regulation of anthocyanin accumulation and hypocotyl growth. However, the molecular mechanism is not well understood, especially in woody plants, such as apple (Malus × domestica). In this study, we identified a light-responsive PIF protein, MdPIF7, in apple and investigated the molecular mechanism of its regulation of anthocyanin biosynthesis and hypocotyl growth. We found that overexpression of MdPIF7 decreased anthocyanin accumulation in transgenic apple materials and promoted hypocotyl elongation in ectopically expressed Arabidopsis (Arabidopsis thaliana). Further investigation showed that MdPIF7 functioned by interacting with B-box 23 (MdBBX23), a positive regulator of anthocyanin biosynthesis in apple and hypocotyl growth inhibition in ectopically expressed Arabidopsis, and attenuating the transcriptional activation of MdBBX23 on LONG HYPOCOTYL 5 (MdHY5). In addition, MdPIF7 interacted with basic region leucine zipper 44 (MdbZIP44) and ethylene response factor 38 (MdERF38), two positive regulators of anthocyanin biosynthesis, and it negatively regulated MdbZIP44- and MdERF38-promoted anthocyanin accumulation by interfering with the interaction between MdbZIP44/MdERF38 and MdMYB1. Taken together, our results reveal that MdPIF7 regulates anthocyanin biosynthesis in apple and hypocotyl growth in ectopically expressed Arabidopsis through MdPIF7-MdBBX23-MdHY5 and MdPIF7-MdbZIP44/MdERF38-MdMYB1 modules. Our findings enrich the functional studies of PIF proteins and provide insights into the molecular mechanism of PIF-mediated anthocyanin biosynthesis and hypocotyl growth.


Asunto(s)
Malus , Fitocromo , Proteínas de Plantas , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Malus/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant Physiol ; 190(1): 305-318, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35674376

RESUMEN

The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.


Asunto(s)
Malus , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinación
20.
Plant Cell Environ ; 46(12): 3902-3918, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658649

RESUMEN

Auxin/indole-3-acetic acid (AUX/IAA) and auxin response factor (ARF) proteins are important components of the auxin signalling pathway, but their ubiquitination modification and the mechanism of auxin-mediated anthocyanin biosynthesis remain elusive. Here, the ARF MdARF5-1 was identified as a negative regulator of anthocyanin biosynthesis in apple, and it integrates auxin and ethylene signals by inhibiting the expression of the ethylene response factor MdERF3. The auxin repressor MdIAA29 decreased the inhibitory effect of MdARF5-1 on anthocyanin biosynthesis by attenuating the transcriptional inhibition of MdERF3 by MdARF5-1. In addition, the E3 ubiquitin ligases MdSINA4 and MdSINA11 played negative and positive regulatory roles in anthocyanin biosynthesis by targeting MdIAA29 and MdARF5-1 for ubiquitination degradation, respectively. MdSINA4 destabilized MdSINA11 to regulate anthocyanin accumulation in response to auxin signalling. In sum, our data revealed the crosstalk between auxin and ethylene signals mediated by the IAA29-ARF5-1-ERF3 module and provide new insights into the ubiquitination modification of the auxin signalling pathway.


Asunto(s)
Malus , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Malus/genética , Malus/metabolismo , Antocianinas , Ácidos Indolacéticos/metabolismo , Etilenos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA