Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Pathol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762116

RESUMEN

Duchenne muscular dystrophy (DMD), caused by loss-of-function mutations in the dystrophin gene, results in progressive muscle weakness and early fatality. Impaired autophagy is one of the cellular hallmarks of DMD, contributing to the disease progression. Molecular mechanisms underlying the inhibition of autophagy in DMD are not well understood. In the current study, the DMD mouse model mdx is used for the investigation of signaling pathways leading to suppression of autophagy. Mammalian target of rapamycin complex 1 (mTORC1) is found to be hyperactive in the DMD muscles, accompanying muscle weakness and autophagy impairment. Surprisingly, Akt, a well-known upstream regulator of mTORC1, is not responsible for mTORC1 activation or the dystrophic muscle phenotypes. Instead, leucyl-tRNA synthetase (LeuRS) is found to be overexpressed in mdx muscles compared with the wild type. LeuRS is known to activate mTORC1 in a noncanonical mechanism that involves interaction with RagD, an activator of mTORC1. Disrupting LeuRS interaction with RagD by the small-molecule inhibitor BC-LI-0186 reduces mTORC1 activity, restores autophagy, and ameliorates myofiber damage in the mdx muscles. Furthermore, inhibition of LeuRS by BC-LI-0186 improves dystrophic muscle strength in an autophagy-dependent manner. Taken together, our findings uncover a noncanonical function of the housekeeping protein LeuRS as a potential therapeutic target in the treatment of DMD.

2.
FASEB J ; 35(10): e21948, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34569098

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are house-keeping enzymes that are essential for protein synthesis. However, it has become increasingly evident that some aaRSs also have non-translational functions. Here we report the identification of a non-translational function of threonyl-tRNA synthetase (ThrRS) in myogenic differentiation. We find that ThrRS negatively regulates myoblast differentiation in vitro and injury-induced skeletal muscle regeneration in vivo. This function is independent of amino acid binding or aminoacylation activity of ThrRS, and knockdown of ThrRS leads to enhanced differentiation without affecting the global protein synthesis rate. Furthermore, we show that the non-catalytic new domains (UNE-T and TGS) of ThrRS are both necessary and sufficient for the myogenic function. In searching for a molecular mechanism of this new function, we find the kinase JNK to be a downstream target of ThrRS. Our data further reveal MEKK4 and MKK4 as upstream regulators of JNK in myogenesis and the MEKK4-MKK4-JNK pathway to be a mediator of the myogenic function of ThrRS. Finally, we show that ThrRS physically interacts with Axin1, disrupts Axin1-MEKK4 interaction and consequently inhibits JNK signaling. In conclusion, we uncover a non-translational function for ThrRS in the maintenance of homeostasis of skeletal myogenesis and identify the Axin1-MEKK4-MKK4-JNK signaling axis to be an immediate target of ThrRS action.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Desarrollo de Músculos , Treonina-ARNt Ligasa/metabolismo , Animales , Proteína Axina/metabolismo , Femenino , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , Treonina-ARNt Ligasa/química
3.
FASEB J ; 33(3): 4021-4034, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509128

RESUMEN

It is well known that an increase in mechanical loading can induce skeletal muscle hypertrophy, and a long standing model in the field indicates that mechanical loads induce hypertrophy via a mechanism that requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Specifically, it has been widely proposed that mechanical loads activate signaling through mTORC1 and that this, in turn, promotes an increase in the rate of protein synthesis and the subsequent hypertrophic response. However, this model is based on a number of important assumptions that have not been rigorously tested. In this study, we created skeletal muscle specific and inducible raptor knockout mice to eliminate signaling by mTORC1, and with these mice we were able to directly demonstrate that mechanical stimuli can activate signaling by mTORC1, and that mTORC1 is necessary for mechanical load-induced hypertrophy. Surprisingly, however, we also obtained multiple lines of evidence that indicate that mTORC1 is not required for a mechanical load-induced increase in the rate of protein synthesis. This observation highlights an important shortcoming in our understanding of how mechanical loads induce hypertrophy and illustrates that additional mTORC1-independent mechanisms play a critical role in this process.-You, J.-S., McNally, R. M., Jacobs, B. L., Privett, R. E., Gundermann, D. M., Lin, K.-H., Steinert, N. D., Goodman, C. A., Hornberger, T. A. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy.


Asunto(s)
Músculo Esquelético/metabolismo , Esfuerzo Físico , Proteína Reguladora Asociada a mTOR/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Hipertrofia/etiología , Hipertrofia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Biosíntesis de Proteínas , Proteína Reguladora Asociada a mTOR/genética , Transducción de Señal
4.
J Biol Chem ; 292(17): 6987-6997, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289099

RESUMEN

Mechanistic target of rapamycin (mTOR) signaling is necessary to generate a mechanically induced increase in skeletal muscle mass, but the mechanism(s) through which mechanical stimuli regulate mTOR signaling remain poorly defined. Recent studies have suggested that Ras homologue enriched in brain (Rheb), a direct activator of mTOR, and its inhibitor, the GTPase-activating protein tuberin (TSC2), may play a role in this pathway. To address this possibility, we generated inducible and skeletal muscle-specific knock-out mice for Rheb (iRhebKO) and TSC2 (iTSC2KO) and mechanically stimulated muscles from these mice with eccentric contractions (EC). As expected, the knock-out of TSC2 led to an elevation in the basal level of mTOR signaling. Moreover, we found that the magnitude of the EC-induced activation of mTOR signaling was significantly blunted in muscles from both inducible and skeletal muscle-specific knock-out mice for Rheb and iTSC2KO mice. Using mass spectrometry, we identified six sites on TSC2 whose phosphorylation was significantly altered by the EC treatment. Employing a transient transfection-based approach to rescue TSC2 function in muscles of the iTSC2KO mice, we demonstrated that these phosphorylation sites are required for the role that TSC2 plays in the EC-induced activation of mTOR signaling. Importantly, however, these phosphorylation sites were not required for an insulin-induced activation of mTOR signaling. As such, our results not only establish a critical role for Rheb and TSC2 in the mechanical activation of mTOR signaling, but they also expose the existence of a previously unknown branch of signaling events that can regulate the TSC2/mTOR pathway.


Asunto(s)
Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Homocigoto , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Contracción Muscular , Músculo Esquelético/metabolismo , Neuropéptidos/genética , Fosforilación , Plásmidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Sirolimus/química , Tamoxifeno/química , Proteína 2 del Complejo de la Esclerosis Tuberosa
5.
J Physiol ; 595(15): 5209-5226, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28542873

RESUMEN

KEY POINTS: Mechanical signals play a critical role in the regulation of muscle mass, but the molecules that sense mechanical signals and convert this stimulus into the biochemical events that regulate muscle mass remain ill-defined. Here we report a mass spectrometry-based workflow to study the changes in protein phosphorylation that occur in mouse skeletal muscle 1 h after a bout of electrically evoked maximal-intensity contractions (MICs). Our dataset provides the first comprehensive map of the MIC-regulated phosphoproteome. Using unbiased bioinformatics approaches, we demonstrate that our dataset leads to the identification of many well-known MIC-regulated signalling pathways, as well as to a plethora of novel MIC-regulated events. We expect that our dataset will serve as a fundamentally important resource for muscle biologists, and help to lay the foundation for entirely new hypotheses in the field. ABSTRACT: The maintenance of skeletal muscle mass is essential for health and quality of life. It is well recognized that maximal-intensity contractions, such as those which occur during resistance exercise, promote an increase in muscle mass. Yet, the molecules that sense the mechanical information and convert it into the signalling events (e.g. phosphorylation) that drive the increase in muscle mass remain undefined. Here we describe a phosphoproteomics workflow to examine the effects of electrically evoked maximal-intensity contractions (MICs) on protein phosphorylation in mouse skeletal muscle. While a preliminary phosphoproteomics experiment successfully identified a number of MIC-regulated phosphorylation events, a large proportion of these identifications were present on highly abundant myofibrillar proteins. We subsequently incorporated a centrifugation-based fractionation step to deplete the highly abundant myofibrillar proteins and performed a second phosphoproteomics experiment. In total, we identified 5983 unique phosphorylation sites of which 663 were found to be regulated by MIC. GO term enrichment, phosphorylation motif analyses, and kinase-substrate predictions indicated that the MIC-regulated phosphorylation sites were chiefly modified by mTOR, as well as multiple isoforms of the MAPKs and CAMKs. Moreover, a high proportion of the regulated phosphorylation sites were found on proteins that are associated with the Z-disc, with over 74% of the Z-disc proteins experiencing robust changes in phosphorylation. Finally, our analyses revealed that the phosphorylation state of two Z-disc kinases (striated muscle-specific serine/threonine protein kinase and obscurin) was dramatically altered by MIC, and we propose ways these kinases could play a fundamental role in skeletal muscle mechanotransduction.


Asunto(s)
Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animales , Estimulación Eléctrica , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Fosforilación , Proteómica
6.
Proc Natl Acad Sci U S A ; 111(44): 15756-61, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25336758

RESUMEN

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Condicionamiento Físico Animal , Receptores Acoplados a Proteínas G/biosíntesis , Transducción de Señal/fisiología , Animales , Colágeno Tipo III/biosíntesis , Hipertrofia/metabolismo , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Masculino , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/metabolismo
7.
J Biol Chem ; 289(3): 1551-63, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24302719

RESUMEN

The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácidos Fosfatidicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diacilglicerol Quinasa/genética , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patología , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Músculo Esquelético/patología , Tamaño de los Órganos/genética , Ácidos Fosfatidicos/genética , Serina-Treonina Quinasas TOR/genética
8.
J Physiol ; 591(18): 4611-20, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23732640

RESUMEN

The goal of this study was to determine whether the mechanical activation of mechanistic target of rapamycin (mTOR) signalling is associated with changes in phosphorylation of tuberous sclerosis complex-2 (TSC2) and targeting of mTOR and TSC2 to the lysosome. As a source of mechanical stimulation, mouse skeletal muscles were subjected to eccentric contractions (ECs). The results demonstrated that ECs induced hyper-phosphorylation of TSC2 and at least part of this increase occurred on residue(s) that fall within RxRxxS/T consensus motif(s). Furthermore, in control muscles, we found that both mTOR and TSC2 are highly enriched at the lysosome. Intriguingly, ECs enhanced the lysosomal association of mTOR and almost completely abolished the lysosomal association of TSC2. Based on these results, we developed a new model that could potentially explain how mechanical stimuli activate mTOR signalling. Furthermore, this is the first study to reveal that the activation of mTOR is associated with the translocation of TSC2 away from the lysosome. Since a large number of signalling pathways rely on TSC2 to control mTOR signalling, our results have potentially revealed a fundamental mechanism via which not only mechanical, but also various other types of stimuli, control mTOR signalling.


Asunto(s)
Lisosomas/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Fosforilación , Transporte de Proteínas , Transducción de Señal , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/química
9.
J Immunol ; 187(3): 1448-57, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21709151

RESUMEN

Macrophages (Mp) and the plasminogen system play important roles in tissue repair following injury. We hypothesized that Mp-specific expression of urokinase-type plasminogen activator (uPA) is sufficient for Mp to migrate into damaged muscle and for efficient muscle regeneration. We generated transgenic mice expressing uPA only in Mp, and we assessed the ability of these mice to repair muscle injury. Mp-only uPA expression was sufficient to induce wild-type levels of Mp accumulation, angiogenesis, and new muscle fiber formation. In mice with wild-type uPA expression, Mp-specific overexpression further increased Mp accumulation and enhanced muscle fiber regeneration. Furthermore, Mp expression of uPA regulated the level of active hepatocyte growth factor, which is required for muscle fiber regeneration, in damaged muscle. In vitro studies demonstrated that uPA promotes Mp migration through proteolytic and nonproteolytic mechanisms, including proteolytic activation of hepatocyte growth factor. In summary, Mp-derived uPA promotes muscle regeneration by inducing Mp migration, angiogenesis, and myogenesis.


Asunto(s)
Macrófagos/enzimología , Músculo Esquelético/enzimología , Regeneración/inmunología , Activador de Plasminógeno de Tipo Uroquinasa/biosíntesis , Activador de Plasminógeno de Tipo Uroquinasa/genética , Animales , Línea Celular , Movimiento Celular/genética , Movimiento Celular/inmunología , Células Cultivadas , Femenino , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Desarrollo de Músculos/genética , Desarrollo de Músculos/inmunología , Músculo Esquelético/citología , Músculo Esquelético/inmunología , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/inmunología , Regeneración/genética , Activador de Plasminógeno de Tipo Uroquinasa/deficiencia
10.
Physiol Rep ; 11(16): e15791, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37620103

RESUMEN

Skeletal muscle regeneration is an essential process to restore muscle function after injury and is influenced by various factors. Despite the known importance of sex hormones in muscle regeneration, whether and what sex difference exists in this process is still unclear. In this study, we provide evidence for a clear sex difference in muscle regeneration in mice. At 7 and 14 days after barium chloride-induced muscle injury, female mice showed a faster recovery of muscle fiber size than males. Consistently, muscle force in female mice was restored faster than in males after injury, and this functional difference was maintained at 14 months of age when regenerative capacity declined. Myosin heavy chain isoform profiling and fatigability test revealed dynamic remodeling of myosin heavy chain isoform expression including a type IIB to IIA/X MHC transition and reduced fatigability in regenerated muscles compared to uninjured muscles. A significant sex difference was detected in myosin heavy chain IIX content, although this did not lead to different fatigability. Together, our results suggest that sex is an important determinant of the recovery of regenerating skeletal muscle and is partially involved in the remodeling of myosin heavy chain isoforms during muscle regeneration.


Asunto(s)
Cadenas Pesadas de Miosina , Caracteres Sexuales , Femenino , Masculino , Animales , Ratones , Cadenas Pesadas de Miosina/genética , Músculo Esquelético , Fibras Musculares Esqueléticas , Fatiga , Isoformas de Proteínas/genética
11.
J Cachexia Sarcopenia Muscle ; 14(4): 1880-1893, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311604

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, leads to progressive and fatal muscle weakness through yet-to-be-fully deciphered molecular perturbations. Emerging evidence implicates RhoA/Rho-associated protein kinase (ROCK) signalling in DMD pathology, yet its direct role in DMD muscle function, and related mechanisms, are unknown. METHODS: Three-dimensionally engineered dystrophin-deficient mdx skeletal muscles and mdx mice were used to test the role of ROCK in DMD muscle function in vitro and in situ, respectively. The role of ARHGEF3, one of the RhoA guanine nucleotide exchange factors (GEFs), in RhoA/ROCK signalling and DMD pathology was examined by generating Arhgef3 knockout mdx mice. The role of RhoA/ROCK signalling in mediating the function of ARHGEF3 was determined by evaluating the effects of wild-type or GEF-inactive ARHGEF3 overexpression with ROCK inhibitor treatment. To gain more mechanistic insights, autophagy flux and the role of autophagy were assessed in various conditions with chloroquine. RESULTS: Inhibition of ROCK with Y-27632 improved muscle force production in 3D-engineered mdx muscles (+25% from three independent experiments, P < 0.05) and in mice (+25%, P < 0.001). Unlike suggested by previous studies, this improvement was independent of muscle differentiation or quantity and instead related to increased muscle quality. We found that ARHGEF3 was elevated and responsible for RhoA/ROCK activation in mdx muscles, and that depleting ARHGEF3 in mdx mice restored muscle quality (up to +36%, P < 0.01) and morphology without affecting regeneration. Conversely, overexpressing ARHGEF3 further compromised mdx muscle quality (-13% vs. empty vector control, P < 0.01) in GEF activity- and ROCK-dependent manner. Notably, ARHGEF3/ROCK inhibition exerted the effects by rescuing autophagy which is commonly impaired in dystrophic muscles. CONCLUSIONS: Our findings uncover a new pathological mechanism of muscle weakness in DMD involving the ARHGEF3-ROCK-autophagy pathway and the therapeutic potential of targeting ARHGEF3 in DMD.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Ratones , Distrofina/genética , Distrofina/metabolismo , Ratones Endogámicos mdx , Debilidad Muscular/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología
12.
J Physiol ; 589(Pt 22): 5485-501, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21946849

RESUMEN

Chronic mechanical loading (CML) of skeletal muscle induces compensatory growth and the drug rapamycin has been reported to block this effect. Since rapamycin is considered to be a highly specific inhibitor of the mammalian target of rapamycin (mTOR), many have concluded that mTOR plays a key role in CML-induced growth regulatory events. However, rapamycin can exert mTOR-independent actions and systemic administration of rapamycin will inhibit mTOR signalling in all cells throughout the body. Thus, it is not clear if the growth inhibitory effects of rapamycin are actually due to the inhibition of mTOR signalling, and more specifically, the inhibition of mTOR signalling in skeletal muscle cells. To address this issue, transgenic mice with muscle specific expression of various rapamycin-resistant mutants of mTOR were employed. These mice enabled us to demonstrate that mTOR, within skeletal muscle cells, is the rapamycin-sensitive element that confers CML-induced hypertrophy, and mTOR kinase activity is necessary for this event. Surprisingly, CML also induced hyperplasia, but this occurred through a rapamycin-insensitive mechanism. Furthermore, CML was found to induce an increase in FoxO1 expression and PKB phosphorylation through a mechanism that was at least partially regulated by an mTOR kinase-dependent mechanism. Finally, CML stimulated ribosomal RNA accumulation and rapamycin partially inhibited this effect; however, the effect of rapamycin was exerted through a mechanism that was independent of mTOR in skeletal muscle cells. Overall, these results demonstrate that CML activates several growth regulatory events, but only a few (e.g. hypertrophy) are fully dependent on mTOR signalling within the skeletal muscle cells.


Asunto(s)
Hipertrofia/etiología , Músculo Esquelético/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/fisiología , Soporte de Peso/fisiología , Técnicas de Ablación , Animales , Hipertrofia/patología , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Músculo Esquelético/cirugía , Mutación , Ribosomas/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
13.
Front Physiol ; 12: 779547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916960

RESUMEN

Sarcopenia, or age-related skeletal muscle atrophy and weakness, imposes significant clinical and economic burdens on affected patients and societies. Neurological degeneration, such as motoneuron death, has been recognized as a key contributor to sarcopenia. However, little is known about how aged/sarcopenic muscle adapts to this denervation stress. Here, we show that mice at 27months of age exhibit clear signs of sarcopenia but no accelerated denervation-induced muscle atrophy when compared to 8-month-old mice. Surprisingly, aging lends unique atrophy resistance to tibialis anteria muscle, accompanied by an increase in the cascade of mammalian target of rapamycin complex 1 (mTORC1)-independent anabolic events involving Akt signaling, rRNA biogenesis, and protein synthesis during denervation. These results expand our understanding of age-dependent stress responses and may help develop better countermeasures to sarcopenia.

14.
Autophagy ; 17(4): 1044-1045, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557669

RESUMEN

Macroautophagy/autophagy plays a critical role in restoring/maintaining skeletal muscle function under normal conditions as well as during damage-induced regeneration. This homeostatic degradation mechanism, however, rapidly declines with aging leading to functional deterioration of skeletal muscles. ARHGEF3 is a RHOA- and RHOB-specific GEF capable of inhibiting myogenic AKT signaling independently of its GEF function. Our recent study reveals that ARHGEF3 negatively regulates skeletal muscle autophagy during injury-induced regeneration and normal aging. By enhancing autophagy, arhgef3 knockout augments the regenerative capacity of muscles in both young and regeneration-defective middle-aged mice and prevents age-related loss of muscle strength. We further show that the GEF activity of ARHGEF3 toward ROCK, but not its downstream target AKT, mediates its function in muscle regeneration. These findings suggest that ARHGEF3 may be a candidate therapeutic target for impaired muscle regeneration, age-related muscle weakness, and potentially other diseases arising from aberrant regulation of autophagy.


Asunto(s)
Autofagia , Músculo Esquelético , Animales , Ratones , Desarrollo de Músculos , Factores de Intercambio de Guanina Nucleótido Rho , Transducción de Señal
15.
Cell Death Discov ; 7(1): 74, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846288

RESUMEN

Skeletal muscle denervation occurs in diverse conditions and causes severe muscle atrophy. Signaling by mammalian target of rapamycin complex 1 (mTORC1) plays a central role in the maintenance of skeletal muscle mass by regulating net protein balance; yet, its role in denervation-induced atrophy is unclear. In this study, by using skeletal muscle-specific and inducible raptor knockout mice, we demonstrate that signaling through mTORC1 is activated during denervation and plays an essential role in mitigating the atrophy of non-type IIB muscle fibers. Measurements of protein synthesis rates of individual fibers suggest that denervation increases protein synthesis specifically in non-type IIB muscle fibers and that mTORC1 is required for this event. Furthermore, denervation induced a more pronounced increase in the level of phosphorylated ribosomal S6 protein in non-type IIB muscle fibers than in type IIB muscle fibers. Collectively, our results unveil a novel role for mTORC1 in mediating a fiber type-specific regulation of muscle size and protein synthesis during denervation.

16.
Cell Rep ; 34(1): 108594, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406419

RESUMEN

Skeletal muscle regeneration after injury is essential for maintaining muscle function throughout aging. ARHGEF3, a RhoA/B-specific GEF, negatively regulates myoblast differentiation through Akt signaling independently of its GEF activity in vitro. Here, we report ARHGEF3's role in skeletal muscle regeneration revealed by ARHGEF3-KO mice. These mice exhibit indiscernible phenotype under basal conditions. Upon acute injury, however, ARHGEF3 deficiency enhances the mass/fiber size and function of regenerating muscles in both young and regeneration-defective middle-aged mice. Surprisingly, these effects occur independently of Akt but via the GEF activity of ARHGEF3. Consistently, overexpression of ARHGEF3 inhibits muscle regeneration in a Rho-associated kinase-dependent manner. We further show that ARHGEF3 KO promotes muscle regeneration through activation of autophagy, a process that is also critical for maintaining muscle strength. Accordingly, ARHGEF3 depletion in old mice prevents muscle weakness by restoring autophagy. Taken together, our findings identify a link between ARHGEF3 and autophagy-related muscle pathophysiology.


Asunto(s)
Autofagia , Fuerza Muscular , Músculo Esquelético/metabolismo , Regeneración , Factores de Intercambio de Guanina Nucleótido Rho/fisiología , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Envejecimiento/metabolismo , Animales , Diferenciación Celular , Femenino , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioblastos/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
17.
J Clin Invest ; 129(5): 2088-2093, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985292

RESUMEN

Aside from its catalytic function in protein synthesis, leucyl-tRNA synthetase (LRS) has a nontranslational function in regulating cell growth via the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway by sensing amino acid availability. mTOR also regulates skeletal myogenesis, but the signaling mechanism is distinct from that in cell growth regulation. A role of LRS in myogenesis has not been reported. Here we report that LRS negatively regulated myoblast differentiation in vitro. This function of LRS was independent of its regulation of protein synthesis, and it required leucine-binding but not tRNA charging activity of LRS. Local knock down of LRS accelerated muscle regeneration in a mouse injury model, and so did the knock down of Rag or Raptor. Further in vitro studies established a Rag-mTORC1 pathway, which inhibits the IRS1-PI3K-Akt pathway, to be the mediator of the nontranslational function of LRS in myogenesis. BC-LI-0186, an inhibitor reported to disrupt LRS-Rag interaction, promoted robust muscle regeneration with enhanced functional recovery, and this effect was abolished by cotreatment with an Akt inhibitor. Taken together, our findings revealed what we believe is a novel function for LRS in controlling the homeostasis of myogenesis, and suggested a potential therapeutic strategy to target a noncanonical function of a housekeeping protein.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucina-ARNt Ligasa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/fisiología , Biosíntesis de Proteínas , Regeneración , Animales , Catálisis , Dominio Catalítico , Diferenciación Celular , Femenino , Homeostasis , Masculino , Ratones , Ratones Noqueados , Microscopía Fluorescente , Desarrollo de Músculos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN de Transferencia/metabolismo , Resultado del Tratamiento
18.
Sci Signal ; 11(530)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29764991

RESUMEN

Skeletal muscle rapidly remodels in response to various stresses, and the resulting changes in muscle mass profoundly influence our health and quality of life. We identified a diacylglycerol kinase ζ (DGKζ)-mediated pathway that regulated muscle mass during remodeling. During mechanical overload, DGKζ abundance was increased and required for effective hypertrophy. DGKζ not only augmented anabolic responses but also suppressed ubiquitin-proteasome system (UPS)-dependent proteolysis. We found that DGKζ inhibited the transcription factor FoxO that promotes the induction of the UPS. This function was mediated through a mechanism that was independent of kinase activity but dependent on the nuclear localization of DGKζ. During denervation, DGKζ abundance was also increased and was required for mitigating the activation of FoxO-UPS and the induction of atrophy. Conversely, overexpression of DGKζ prevented fasting-induced atrophy. Therefore, DGKζ is an inhibitor of the FoxO-UPS pathway, and interventions that increase its abundance could prevent muscle wasting.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Diacilglicerol Quinasa/fisiología , Proteína Forkhead Box O3/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/patología , Ubiquitina/metabolismo , Respuesta de Proteína Desplegada , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Femenino , Regulación de la Expresión Génica , Hipertrofia/etiología , Hipertrofia/metabolismo , Hipertrofia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , FN-kappa B/metabolismo , Proteolisis , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
19.
Oncotarget ; 8(12): 18754-18772, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27813490

RESUMEN

The translationally controlled tumor protein (TCTP) is upregulated in a range of cancer cell types, in part, by the activation of the mechanistic target of rapamycin (mTOR). Recently, TCTP has also been proposed to act as an indirect activator of mTOR. While it is known that mTOR plays a major role in the regulation of skeletal muscle mass, very little is known about the role and regulation of TCTP in this post-mitotic tissue. This study shows that muscle TCTP and mTOR signaling are upregulated in a range of mouse models (mdx mouse, mechanical load-induced hypertrophy, and denervation- and immobilization-induced atrophy). Furthermore, the increase in TCTP observed in the hypertrophic and atrophic conditions occurred, in part, via a rapamycin-sensitive mTOR-dependent mechanism. However, the overexpression of TCTP was not sufficient to activate mTOR signaling (or increase protein synthesis) and is thus unlikely to take part in a recently proposed positive feedback loop with mTOR. Nonetheless, TCTP overexpression was sufficient to induce muscle fiber hypertrophy. Finally, TCTP overexpression inhibited the promoter activity of the muscle-specific ubiquitin proteasome E3-ligase, MuRF1, suggesting that TCTP may play a role in inhibiting protein degradation. These findings provide novel data on the role and regulation of TCTP in skeletal muscle in vivo.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Músculo Esquelético/metabolismo , Animales , Atrofia/metabolismo , Atrofia/patología , Western Blotting , Modelos Animales de Enfermedad , Electroporación , Hipertrofia/metabolismo , Hipertrofia/patología , Inmovilización , Inmunohistoquímica , Ratones , Ratones Endogámicos mdx , Desnervación Muscular , Músculo Esquelético/patología , Proteína Tumoral Controlada Traslacionalmente 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA