Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(6): 321, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727732

RESUMEN

The rapid and precise monitoring of peripheral blood miRNA levels holds paramount importance for disease diagnosis and treatment monitoring. In this study, we propose an innovative research strategy that combines the catalytic hairpin assembly reaction with SERS signal congregation and enhancement. This combination can significantly enhance the stability of SERS detection, enabling stable and efficient detection of miRNA. Specifically, our paper-based SERS detection platform incorporates a streptavidin-modified substrate, biotin-labeled catalytic hairpin assembly reaction probes, 4-ATP, and primer-co-modified gold nanoparticles. In the presence of miRNA, the 4-ATP and primer-co-modified gold nanoparticles can specifically recognize the miRNA and interact with the biotin-labeled CHA probes to initiate an interfacial catalytic hairpin assembly reaction. This enzyme-free high-efficiency catalytic process can accumulate a large amount of biotin on the gold nanoparticles, which then bind to the streptavidin on the substrate with the assistance of the driving liquid, forming red gold nanoparticle stripes. These provide a multitude of hotspots for SERS, enabling enhanced signal detection. This innovative design achieves a low detection limit of 3.47 fM while maintaining excellent stability and repeatability. This conceptually innovative detection platform offers new technological possibilities and solutions for clinical miRNA detection.


Asunto(s)
Biotina , Oro , Límite de Detección , Nanopartículas del Metal , MicroARNs , Espectrometría Raman , MicroARNs/sangre , MicroARNs/análisis , Nanopartículas del Metal/química , Oro/química , Espectrometría Raman/métodos , Biotina/química , Humanos , Catálisis , Estreptavidina/química
2.
Cancers (Basel) ; 16(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38339301

RESUMEN

Hepatocellular carcinoma (HCC), which is the third leading cause of cancer-related mortality in the world, presents a significant medical challenge. Triptolide (TP) has been identified as an effective therapeutic drug for HCC. However, its precise therapeutic mechanism is still unknown. Understanding the mechanism of action of TP against HCC is crucial for its implementation in the field of HCC treatment. We hypothesize that the anti-HCC actions of TP might be related to its modulation of HCC lipid metabolism given the crucial role that lipid metabolism plays in promoting the progression of HCC. In this work, we first demonstrate that, both in vitro and in vivo, TP significantly reduces lipid accumulation in HCC cells. Additionally, we notice that lipoprotein lipase (LPL) expression is markedly upregulated in HCC, and that its levels are positively connected with the disease's progression. It is interesting to note that TP dramatically reduces LPL activity, which in turn prevents HCC growth and reduces lipid accumulation. Additionally, the effect of TP on LPL is a direct correlation. These results definitely demonstrate that TP protects hepatocytes against abnormal accumulation of lipids by transcriptionally suppressing LPL, which reduces the development of HCC. This newly identified pathway provides insight into the process through which TP exerts its anti-HCC actions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA