Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Clin Cancer Res ; 27(1): 288-300, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33028592

RESUMEN

PURPOSE: The DNA damage immune response (DDIR) assay was developed in breast cancer based on biology associated with deficiencies in homologous recombination and Fanconi anemia pathways. A positive DDIR call identifies patients likely to respond to platinum-based chemotherapies in breast and esophageal cancers. In colorectal cancer, there is currently no biomarker to predict response to oxaliplatin. We tested the ability of the DDIR assay to predict response to oxaliplatin-based chemotherapy in colorectal cancer and characterized the biology in DDIR-positive colorectal cancer. EXPERIMENTAL DESIGN: Samples and clinical data were assessed according to DDIR status from patients who received either 5-fluorouracil (5-FU) or 5FUFA (bolus and infusion 5-FU with folinic acid) plus oxaliplatin (FOLFOX) within the FOCUS trial (n = 361, stage IV), or neoadjuvant FOLFOX in the FOxTROT trial (n = 97, stage II/III). Whole transcriptome, mutation, and IHC data of these samples were used to interrogate the biology of DDIR in colorectal cancer. RESULTS: Contrary to our hypothesis, DDIR-negative patients displayed a trend toward improved outcome for oxaliplatin-based chemotherapy compared with DDIR-positive patients. DDIR positivity was associated with microsatellite instability (MSI) and colorectal molecular subtype 1. Refinement of the DDIR signature, based on overlapping IFN-related chemokine signaling associated with DDIR positivity across colorectal cancer and breast cancer cohorts, further confirmed that the DDIR assay did not have predictive value for oxaliplatin-based chemotherapy in colorectal cancer. CONCLUSIONS: DDIR positivity does not predict improved response following oxaliplatin treatment in colorectal cancer. However, data presented here suggest the potential of the DDIR assay in identifying immune-rich tumors that may benefit from immune checkpoint blockade, beyond current use of MSI status.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bioensayo/métodos , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/terapia , Daño del ADN/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioterapia Adyuvante/métodos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/mortalidad , Daño del ADN/efectos de los fármacos , Análisis Mutacional de ADN , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Perfilación de la Expresión Génica , Humanos , Leucovorina/farmacología , Leucovorina/uso terapéutico , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Mutación , Terapia Neoadyuvante/métodos , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/uso terapéutico , Supervivencia sin Progresión , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Mol Cell Biol ; 28(16): 4915-26, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18541663

RESUMEN

Set2 (KMT3)-dependent methylation (me) of histone H3 at lysine 36 (H3K36) promotes deacetylation of transcribed chromatin and represses cryptic promoters within genes. Although Set2 is the only methyltransferase (KMTase) for H3K36 in yeast, it is not known if Set2 is regulated or whether the different methylation states at H3K36 are functionally distinct. Here we show that the N-terminal 261 residues of Set2 (Set2(1-261)), containing the SET KMTase domain, are sufficient for H3K36me2, histone deacetylation, and repression of cryptic promoters at STE11. Set2-catalyzed H3K36me2 does not require either Ctk1-dependent phosphorylation of RNA polymerase II (RNAPII) or the presence of the phospho-C-terminal domain (CTD) interaction (SRI) domain of Set2. This finding is consistent with a known correlation between H3K36me2 and whether a gene is on or off, but not the level of activity of a gene. By contrast, H3K36me3 requires Spt6, proline 38 on histone H3 (H3P38), the CTD of RNAPII, Ctk1, and the C-terminal SRI domain of Set2. We suggest that the C-terminal region of Set2, in conjunction with the phosphorylated CTD of RNAPII, influences the KMTase activity to promote H3K36me3 during transcription elongation.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Chaperonas de Histonas , Metilación , Proteínas Nucleares/química , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA