Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 135(2): 261-71, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957201

RESUMEN

Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , ADN Helicasas/metabolismo , Inestabilidad Genómica , Recombinación Genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , ADN/metabolismo , ADN Helicasas/genética , Reparación del ADN , Humanos , Mutación , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS Genet ; 9(7): e1003582, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874209

RESUMEN

The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the MUS-81 and XPF-1 endonucleases act redundantly to process late recombination intermediates to form crossovers during C. elegans meiosis.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Meiosis/genética , Recombinación Genética , Animales , Caenorhabditis elegans/genética , Segregación Cromosómica/genética , Intercambio Genético , ADN Cruciforme/genética , Endodesoxirribonucleasas/genética , Humanos , Mutación
3.
J Cell Sci ; 124(Pt 4): 501-13, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282472

RESUMEN

Meiotic crossovers are essential for ensuring correct chromosome segregation as well as for creating new combinations of alleles for natural selection to take place. During meiosis, excess meiotic double-strand breaks (DSBs) are generated; a subset of these breaks are repaired to form crossovers, whereas the remainder are repaired as non-crossovers. What determines where meiotic DSBs are created and whether a crossover or non-crossover will be formed at any particular DSB remains largely unclear. Nevertheless, several recent papers have revealed important insights into the factors that control the decision between crossover and non-crossover formation in meiosis, including DNA elements that determine the positioning of meiotic DSBs, and the generation and processing of recombination intermediates. In this review, we focus on the factors that influence DSB positioning, the proteins required for the formation of recombination intermediates and how the processing of these structures generates either a crossover or non-crossover in various organisms. A discussion of crossover interference, assurance and homeostasis, which influence crossing over on a chromosome-wide and genome-wide scale - in addition to current models for the generation of interference - is also included. This Commentary aims to highlight recent advances in our understanding of the factors that promote or prevent meiotic crossing over.


Asunto(s)
Intercambio Genético , Meiosis , Complejo Sinaptonémico/metabolismo , Animales , Roturas del ADN de Doble Cadena , Humanos , Complejo Sinaptonémico/genética , Levaduras/citología , Levaduras/genética
4.
Nucleic Acids Res ; 39(5): 1647-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21097466

RESUMEN

Telomere maintenance and DNA repair are crucial processes that protect the genome against instability. RTEL1, an essential iron-sulfur cluster-containing helicase, is a dominant factor that controls telomere length in mice and is required for telomere integrity. In addition, RTEL1 promotes synthesis-dependent strand annealing to direct DNA double-strand breaks into non-crossover outcomes during mitotic repair and in meiosis. Here, we review the role of RTEL1 in telomere maintenance and homologous recombination and discuss models linking RTEL1's enzymatic activity to its function in telomere maintenance and DNA repair.


Asunto(s)
ADN Helicasas/fisiología , Recombinación Genética , Telómero/metabolismo , Animales , Meiosis/genética , Ratones , Mitosis/genética
5.
PLoS Genet ; 5(11): e1000735, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19936019

RESUMEN

Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR-mediated repair at stalled replication forks. A reduction in crossover recombination frequencies-accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction-support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Desoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/metabolismo , Genoma/genética , Células Germinativas/metabolismo , Recombinación Genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Núcleo Celular/metabolismo , Emparejamiento Cromosómico/genética , Cromosomas/metabolismo , Secuencia Conservada , Intercambio Genético , Daño del ADN , ADN Helicasas/genética , Reparación del ADN , ADN Cruciforme/metabolismo , Desoxirribonucleasas/genética , Endodesoxirribonucleasas/genética , Esterasas/metabolismo , Meiosis , Morfogénesis/genética , Mutación/genética , Profase , Unión Proteica , Homología de Secuencia de Aminoácido
6.
Mutat Res ; 668(1-2): 103-16, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19059419

RESUMEN

Fanconi anemia (FA) is a severe recessive disorder with a wide range of clinical manifestations [M. Levitus, H. Joenje, J.P. de Winter, The Fanconi anemia pathway of genomic maintenance, Cell Oncol. 28 (2006) 3-29]. In humans, 13 complementation groups have been identified to underlie FA: A, B, C, D1, D2, E, F, G, I, J, L, M, and N [W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735-748]. Cells defective for any of these genes display chromosomal aberrations and sensitivity to DNA interstrand cross-links (ICLs). It has therefore been suggested that the 13 FA proteins constitute a pathway for the repair of ICLs, and that a deficiency in this repair process causes genomic instability leading to the different clinical phenotypes. However, the exact nature of this repair pathway, or even whether all 13 FA proteins are involved at some stage of a linear repair process, remains to be defined. Undoubtedly, the recent identification and characterisation of FA homologues in model organisms, such as Caenorhabditis elegans, will help facilitate an understanding of the function of the FA proteins by providing new analytical tools. To date, sequence homologues of five FA genes have been identified in C. elegans. Three of these homologues have been confirmed: brc-2 (FANCD1/BRCA2), fcd-2 (FANCD2), and dog-1 (FANCJ/BRIP1); and two remain to be characterised: W02D3.10 (FANCI) and drh-3 (FANCM). Here we review how the nematode can be used to study FA-associated DNA repair, focusing on what is known about the ICL repair genes in C. elegans and which important questions remain for the field.


Asunto(s)
Caenorhabditis elegans/genética , Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN , Anemia de Fanconi/genética , Modelos Animales , Animales , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica
7.
Genetics ; 173(2): 697-708, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16547095

RESUMEN

In C. elegans, DOG-1 prevents deletions that initiate in polyG/polyC tracts (G/C tracts), most likely by unwinding secondary structures that can form in G/C tracts during lagging-strand DNA synthesis. We have used the dog-1 mutant to assay the in vivo contribution of various repair genes to the maintenance of G/C tracts. Here we show that DOG-1 and the BLM ortholog, HIM-6, act synergistically during replication; simultaneous loss of function of both genes results in replicative stress and an increase in the formation of small deletions that initiate in G/C tracts. Similarly, we demonstrate that the C. elegans orthologs of the homologous recombination repair genes BARD1, RAD51, and XPF and the trans-lesion synthesis polymerases poleta and polkappa contribute to the prevention of deletions in dog-1 mutants. Finally, we provide evidence that the small deletions generated in the dog-1 background are not formed through homologous recombination, nucleotide excision repair, or nonhomologous end-joining mechanisms, but appear to result from a mutagenic repair mechanism acting at G/C tracts. Our data support the hypothesis that absence of DOG-1 leads to replication fork stalling that can be repaired by deletion-free or deletion-prone mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , ADN Helicasas/genética , Genes de Helminto , Animales , Apoptosis , Secuencia de Bases , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/ultraestructura , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/metabolismo , Reparación del ADN/genética , Replicación del ADN , ADN de Helmintos/química , ADN de Helmintos/genética , ADN de Helmintos/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Genoma de los Helmintos , Inestabilidad Genómica , Mitosis , Modelos Genéticos , Mutación , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Recombinación Genética , Eliminación de Secuencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Science ; 327(5970): 1254-8, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20203049

RESUMEN

Meiotic crossovers (COs) are tightly regulated to ensure that COs on the same chromosome are distributed far apart (crossover interference, COI) and that at least one CO is formed per homolog pair (CO homeostasis). CO formation is controlled in part during meiotic double-strand break (DSB) creation in Caenorhabditis elegans, but a second level of control must also exist because meiotic DSBs outnumber COs. We show that the antirecombinase RTEL-1 is required to prevent excess meiotic COs, probably by promoting meiotic synthesis-dependent strand annealing. Two distinct classes of meiotic COs are increased in rtel-1 mutants, and COI and homeostasis are compromised. We propose that RTEL-1 implements the second level of CO control by promoting noncrossovers.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Intercambio Genético , ADN Helicasas/metabolismo , Meiosis , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN , ADN de Helmintos/genética , ADN de Helmintos/metabolismo , Homeostasis , Mutación , Polimorfismo de Nucleótido Simple , Cromosoma X/genética
9.
Mol Cell Biol ; 28(5): 1470-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18086896

RESUMEN

Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by defective DNA interstrand cross-link (ICL) repair. Here, we show that DOG-1 is the Caenorhabditis elegans homologue of FANCJ, a helicase mutated in FA-J patients. DOG-1 performs a conserved role in ICL repair, as dog-1 mutants are hypersensitive to ICL-inducing agents, but not to UVC irradiation or X rays. Genetic analysis indicated that dog-1 is epistatic with fcd-2 (C. elegans FANCD2) but is nonepistatic with brc-1 (C. elegans BRCA1), thus establishing the existence of two distinct pathways of ICL repair in worms. Furthermore, DOG-1 is dispensable for FCD-2 and RAD-51 focus formation, suggesting that DOG-1 operates downstream of FCD-2 and RAD-51 in ICL repair. DOG-1 was previously implicated in poly(G)/poly(C) (G/C) tract maintenance during DNA replication. G/C tracts remain stable in the absence of ATL-1, CLK-2 (FA pathway activators), FCD-2, BRC-2, and MLH-1 (associated FA components), implying that DOG-1 is the sole FA component required for G/C tract maintenance in a wild-type background. However, FCD-2 is required to promote deletion-free repair at G/C tracts in dog-1 mutants, consistent with a role for FA factors at the replication fork. The functional conservation between DOG-1 and FANCJ suggests a possible role for FANCJ in G/C tract maintenance in human cells.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , ARN Helicasas/fisiología , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Reactivos de Enlaces Cruzados/farmacología , ADN Helicasas/química , ADN Helicasas/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inmunohistoquímica , Datos de Secuencia Molecular , Mutación , ARN Helicasas/genética , ARN Helicasas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA