Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genes Dev ; 36(11-12): 737-751, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798383

RESUMEN

The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding ß-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Neoplasias Encefálicas/patología , Ciclo Celular/genética , Neoplasias Cerebelosas/genética , Cilios/genética , Humanos , Meduloblastoma/genética , Ratones
2.
Cell ; 132(3): 474-86, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18267077

RESUMEN

Mitotic spindle orientation and plane of cleavage in mammals is a determinant of whether division yields progenitor expansion and/or birth of new neurons during radial glial progenitor cell (RGPC) neurogenesis, but its role earlier in neuroepithelial stem cells is poorly understood. Here we report that Lis1 is essential for precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. Controlled gene deletion of Lis1 in vivo in neuroepithelial stem cells, where cleavage is uniformly vertical and symmetrical, provokes rapid apoptosis of those cells, while radial glial progenitors are less affected. Impaired cortical microtubule capture via loss of cortical dynein causes astral and cortical microtubules to be greatly reduced in Lis1-deficient cells. Increased expression of the LIS/dynein binding partner NDEL1 restores cortical microtubule and dynein localization in Lis1-deficient cells. Thus, control of symmetric division, essential for neuroepithelial stem cell proliferation, is mediated through spindle orientation determined via LIS1/NDEL1/dynein-mediated cortical microtubule capture.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Embrión de Mamíferos/citología , Proteínas Asociadas a Microtúbulos/metabolismo , Células Neuroepiteliales/citología , Huso Acromático/metabolismo , Células Madre/citología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Encéfalo/citología , Encéfalo/embriología , Ciclo Celular , Movimiento Celular , Proliferación Celular , Dineínas/metabolismo , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Neuronas/citología
3.
Am J Pathol ; 188(1): 11-22, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030052

RESUMEN

The primary cilium, a sensory appendage that is present in most mammalian cells, plays critical roles in signaling pathways and cell cycle progression. Mutations that affect the structure or function of primary cilia result in ciliopathies, a group of developmental and degenerative diseases that affect almost all organs and tissues. Our understanding of the constituents, development, and function of primary cilia has advanced considerably in recent years, revealing pathogenic mechanisms that potentially underlie ciliopathies. In the brain, the primary cilia are crucial for early patterning, neurogenesis, neuronal maturation and survival, and tumorigenesis, mostly through regulating cell cycle progression, Hedgehog signaling, and WNT signaling. We review these advances in our knowledge of primary cilia, focusing on brain development, and discuss the mechanisms that may underlie brain abnormalities in ciliopathies.


Asunto(s)
Encefalopatías/patología , Encéfalo/patología , Cilios/patología , Animales , Encéfalo/crecimiento & desarrollo , Carcinogénesis/patología , Humanos , Mutación , Neurogénesis/fisiología
4.
Hum Mol Genet ; 23(2): 449-66, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24030547

RESUMEN

Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore-microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1-dynein complex. Overexpression of NDEL1-dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1-NDEL1-dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas Portadoras/metabolismo , Dineínas/metabolismo , Lisencefalia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Células Cultivadas , Centrosoma , Corteza Cerebral , Segregación Cromosómica , Células HEK293 , Humanos , Lisencefalia/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación , Neuronas/metabolismo , Estabilidad Proteica , Huso Acromático/genética
5.
PLoS Genet ; 7(3): e1001331, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21423666

RESUMEN

Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases.


Asunto(s)
Encéfalo/metabolismo , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular , Ciclo Celular , Polaridad Celular/genética , Citoesqueleto/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fenotipo , Proteína Quinasa C/metabolismo , Transducción de Señal , Sinapsis/fisiología , Regulación hacia Arriba
6.
mBio ; 14(3): e0051023, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37052506

RESUMEN

Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.


Asunto(s)
Proteínas Hedgehog , Neocórtex , Embarazo , Femenino , Humanos , Proteínas Hedgehog/metabolismo , Neocórtex/metabolismo , Receptor Toll-Like 2/metabolismo , Ligandos , Receptor Toll-Like 6/metabolismo
7.
Semin Cell Dev Biol ; 21(8): 823-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20688183

RESUMEN

Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. The two most common genes mutated in patients with lissencephaly are LIS1 and DCX. LIS1 was the first gene cloned that was important for neuronal migration in any organism, and heterozygous mutations or deletions of LIS1 are found in the majority of patients with lissencephaly, while DCX mutations were found in males with X-linked lissencephaly. In this review, we will discuss how an understanding of the molecular and cellular pathways disrupted in model organisms with Lis1 and Dcx mutations or knock-down not only provide insights into the normal processes of neuronal migration, including neurogenesis, but they also may lead to potential novel therapeutic strategies for these severe cortical malformations.


Asunto(s)
Modelos Animales de Enfermedad , Lisencefalia/genética , Lisencefalia/terapia , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/metabolismo , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/terapia , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Lisencefalia/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis , Neuropéptidos/metabolismo , Ratas
8.
J Neurosci ; 30(8): 3002-12, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20181597

RESUMEN

Heterozygous LIS1 mutations and males with loss of the X-linked DCX result in lissencephaly, a neuronal migration defect. LIS1 regulates nuclear translocation and mitotic division of neural progenitor cells, while the role of DCX in cortical development remains poorly understood. Here, we uncovered novel neuronal migration and proliferation defects in the Dcx mutant embryonic brains. Although cortical organization was fairly well preserved, Dcx(ko/Y) neurons displayed defective migration velocities similar to Lis1(+/ko) neurons when characterized by time-lapse video-microscopy of embryonic cortical slices. Dcx(ko/Y) migrating neurons displayed novel multidirectional movements with abnormal morphology and increased branching. Surprisingly, Dcx(ko/Y) radial glial cells displayed spindle orientation abnormalities similar to Lis1(+/ko) cells that in turn lead to moderate proliferation defects both in vivo and in vitro. We found functional genetic interaction of the two genes, with the combined effects of Lis1 haploinsufficiency and Dcx knock-out leading to more severe neuronal migration and proliferation phenotypes in the Lis1(+/ko);Dcx(ko/Y) male double mutant compared with the single mutants, resulting in cortical disorganization and depletion of the progenitor pool. Thus, we provide definitive evidence for a critical role for Dcx in neuronal migration and neurogenesis, as well as for the in vivo genetic interaction of the two genes most commonly involved in human neuronal migration defects.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Encéfalo/anomalías , Diferenciación Celular/genética , Movimiento Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/genética , Neuropéptidos/genética , Animales , Encéfalo/citología , Forma de la Célula/genética , Células Cultivadas , Corteza Cerebral/anomalías , Corteza Cerebral/citología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Malformaciones del Sistema Nervioso/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Esferoides Celulares , Células Madre/citología , Células Madre/metabolismo
9.
J Neurosci ; 29(49): 15520-30, 2009 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20007476

RESUMEN

Haploinsufficiency of LIS1 results in lissencephaly, a human neuronal migration disorder. LIS1 is a microtubule- (MT) and centrosome- [microtubule organizing center (MTOC)] associated protein that regulates nucleokinesis via the regulation of dynein motor function and localization. NDEL1 (NudE isoform, NudE like) interacts with LIS1/dynein complex, and is phosphorylated by CDK5/P35. Previous reports using siRNA-mediated knock-down demonstrated similar critical roles for LIS1 and NDEL1 during neuronal migration, but neuronal migration has not been studied in genetic mutants for Lis1 and Ndel1 where protein levels are uniform in all cells. Brains from mice with complete loss of Lis1 and Ndel1 displayed severe cortical layering and hippocampal defects, but Lis1 mutants had more severe defects. Neuronal migration speed was reduced and neurite lengths were elongated in proportion to the reduction of LIS1 and NDEL1 protein levels in embryonic day 14.5 mutant cortical slices compared to wild type, using two-photon confocal time lapse videomicroscopy. Additionally, mice with 35% of wild-type NDEL1 levels displayed diverse branched migration modes with multiple leading processes, suggesting defects in adhesion and/or polarity. Complete loss of Lis1 or Ndel1 resulted in the total inhibition of nuclear movement in cortical slice assays, and in neurosphere assays, the percentage of migrating neurons with correctly polarized MTOC location was significantly reduced while nuclear-centrosomal distance was extended. Neurite lengths were increased after complete loss Ndel1 but reduced after complete loss of Lis1. Thus, Lis1 and Ndel1 are essential for normal cortical neuronal migration, neurite outgrowth, and function of the MTOC in a dose-dependent manner.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuritas/fisiología , Neuronas/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/fisiología , Proteínas Portadoras/genética , Recuento de Células , Núcleo Celular/fisiología , Centrosoma/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/fisiología , Técnicas In Vitro , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/fisiología , Mutación , Neuronas/citología , Células Madre/citología , Células Madre/fisiología
10.
Dev Cell ; 43(6): 673-688.e5, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29103956

RESUMEN

Mechanistic target of rapamycin (MTOR) cooperates with Hedgehog (HH) signaling, but the underlying mechanisms are incompletely understood. Here we provide genetic, biochemical, and pharmacologic evidence that MTOR complex 1 (mTORC1)-dependent translation is a prerequisite for HH signaling. The genetic loss of mTORC1 function inhibited HH signaling-driven growth of the cerebellum and medulloblastoma. Inhibiting translation or mTORC1 blocked HH signaling. Depleting 4EBP1, an mTORC1 target that inhibits translation, alleviated the dependence of HH signaling on mTORC1. Consistent with this, phosphorylated 4EBP1 levels were elevated in HH signaling-driven medulloblastomas in mice and humans. In mice, an mTORC1 inhibitor suppressed medulloblastoma driven by a mutant SMO that is inherently resistant to existing SMO inhibitors, prolonging the survival of the mice. Our study reveals that mTORC1-mediated translation is a key component of HH signaling and an important target for treating medulloblastoma and other cancers driven by HH signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Portadoras/antagonistas & inhibidores , Neoplasias Cerebelosas/metabolismo , Proteínas Hedgehog/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Meduloblastoma/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular/fisiología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Factores Eucarióticos de Iniciación , Proteínas Hedgehog/genética , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo
11.
Invest Ophthalmol Vis Sci ; 47(6): 2675-85, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16723486

RESUMEN

PURPOSE: Unlike most monolayer epithelial cells, cultured RPE are competent to form a zonular adhesion of N- rather than E-cadherin. To determine whether other normal epithelial cells do likewise, cells with high endogenous N-cadherin were cloned from the typically E-cadherin dominant epithelial line Madin-Darby canine kidney cells (MDCK) to analyze cell and junction phenotype in the presence of N-cadherin. METHODS: A MDCK subclonal line, clone-YH, was selected for high endogenous N-cadherin and was compared with the RPE line hTERT-RPE1 with regard to cell phenotype, cadherin gene expression and cadherin protein distribution, glycosylation state, and catenin complex composition. RESULTS: In early cultures, hTERT-RPE1 cells are moderately epithelioid with junctional N-cadherin, but clone-YH cells are initially highly fusiform with N-cadherin in multiple sites. With time, N-cadherin in clone-YH becomes deglycosylated, resistant to detergent extraction, and zonular, and cells become epithelioid. Treatment with the N-glycosylation inhibitor tunicamycin induces an epithelioid phenotype in clone-YH, like time in culture but disrupts the hTERT-RPE1 phenotype. N-cadherin traffics to surface membranes and complexes with catenins regardless of cell type or glycosylation state, although catenin complex composition varied, showing enriched alpha-catenin under the cell-type-specific conditions in which N-cadherin was junctional. Clone-YH continued to express E-cadherin as a very minor cadherin, which trafficked to membranes but did not accumulate at junctions. CONCLUSIONS: RPE cells are not unique in localizing N-cadherin to a zonular adhesion typical of a monolayer epithelium, because even epithelial cells derived from a typically E-cadherin dominant line (clone-YH) form a zonular N-cadherin junction if the protein is abundant. However, there are cell and cadherin differences in mechanisms of cadherin accumulation in a zonular pattern, and a previously unrecognized cell-type-specific role for protein glycosylation in epithelial phenotype development.


Asunto(s)
Cadherinas/metabolismo , Células Epiteliales/citología , Epitelio Pigmentado Ocular/citología , Animales , Biotinilación , Cadherinas/genética , Línea Celular , Células Clonales , Perros , Células Epiteliales/metabolismo , Expresión Génica , Glicosilación , Humanos , Riñón/citología , Microscopía Fluorescente , Fenotipo , Epitelio Pigmentado Ocular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Cancer Cell ; 29(1): 5-16, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26766587

RESUMEN

Four distinct subgroups of cerebellar medulloblastomas (MBs) differ in their histopathology, molecular profiles, and prognosis. c-Myc (Myc) or MycN overexpression in granule neuron progenitors (GNPs) induces Group 3 (G3) or Sonic Hedgehog (SHH) MBs, respectively. Differences in Myc and MycN transcriptional profiles depend, in part, on their interaction with Miz1, which binds strongly to Myc but not MycN, to target sites on chromatin. Myc suppresses ciliogenesis and reprograms the transcriptome of SHH-dependent GNPs through Miz1-dependent gene repression to maintain stemness. Genetic disruption of the Myc/Miz1 interaction inhibited G3 MB development. Target genes of Myc/Miz1 are repressed in human G3 MBs but not in other subgroups. Therefore, the Myc/Miz1 interaction is a defining hallmark of G3 MB development.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Meduloblastoma/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Ratones , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas
14.
Neuron ; 68(4): 695-709, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21092859

RESUMEN

Coordinated migration of newly born neurons to their prospective target laminae is a prerequisite for neural circuit assembly in the developing brain. The evolutionarily conserved LIS1/NDEL1 complex is essential for neuronal migration in the mammalian cerebral cortex. The cytoplasmic nature of LIS1 and NDEL1 proteins suggest that they regulate neuronal migration cell autonomously. Here, we extend mosaic analysis with double markers (MADM) to mouse chromosome 11 where Lis1, Ndel1, and 14-3-3ɛ (encoding a LIS1/NDEL1 signaling partner) are located. Analyses of sparse and uniquely labeled mutant cells in mosaic animals reveal distinct cell-autonomous functions for these three genes. Lis1 regulates neuronal migration efficiency in a dose-dependent manner, while Ndel1 is essential for a specific, previously uncharacterized, late step of neuronal migration: entry into the target lamina. Comparisons with previous genetic perturbations of Lis1 and Ndel1 also suggest a surprising degree of cell-nonautonomous function for these proteins in regulating neuronal migration.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/fisiología , Proteínas Portadoras/fisiología , Movimiento Celular/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Mosaicismo , Neuronas/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/fisiología , Proteínas Portadoras/genética , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Femenino , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Neuronas/citología , Neuronas/metabolismo
15.
Exp Cell Res ; 303(2): 275-86, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15652342

RESUMEN

Epithelial (E)-cadherin plays a critical role in developing a normal epithelial phenotype but neural (N)-cadherin can disrupt epithelial shape, at least in carcinoma-derived cells. Here the normal epithelial cell line MDCK was used to select for a trypsin-sensitive (TS-MDCK) subpopulation that expresses low levels of endogenous N-cadherin. Similar amounts of E-cadherin and all catenins are found in both TS-MDCK and trypsin-resistant cells (TR-MDCK), but TS-MDCK are less phenotypically epithelioid and more motile, and junctional proteins are more detergent soluble. In TS-MDCK, N-cadherin is largely nonjunctional; a similar N-cadherin distribution and mesenchymal phenotype are found in TR-MDCK transfected to express low levels of exogenous N-cadherin. Little N-cadherin was attracted to junctions between TS-MDCK and hTERT-RPE1 cells, a retinal pigment epithelium-derived line that expresses dominantly N-cadherin. No differences were seen in E-cadherin-catenin complexes in TS- and TR-MDCK, but N-cadherin-catenin complexes in TS-MDCK have more abundant p120 catenin. Overall, the results indicate that E- and N-cadherin assemble stoichiometrically different complexes with p120 in the same cells. Further, N-cadherin does not participate with E-cadherin in a zonular epithelial junction in normal MDCK epithelial cells. Rather, even low levels of endogenous N-cadherin contribute to a disrupted epithelial phenotype, resembling the effect of N-cadherin on carcinoma-derived epithelial cells.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Fosfoproteínas/metabolismo , Animales , Secuencia de Bases , Cadherinas/genética , Cateninas , Línea Celular , ADN Complementario/genética , Perros , Expresión Génica , Humanos , Complejos Multiproteicos , Fenotipo , Epitelio Pigmentado Ocular/citología , Epitelio Pigmentado Ocular/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad , Transfección , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA