Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(43): 51205-51217, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34693713

RESUMEN

Much recent attention has focused on the voltage-driven reversible topotactic transformation between the ferromagnetic metallic perovskite (P) SrCoO3-δ and oxygen-vacancy-ordered antiferromagnetic insulating brownmillerite (BM) SrCoO2.5. This is emerging as a paradigmatic example of the power of electrochemical gating (using, e.g., ionic liquids/gels), the wide modulation of electronic, magnetic, and optical properties generating clear application potential. SrCoO3 films are challenging with respect to stability, however, and there has been little exploration of alternate compositions. Here, we present the first study of ion-gel-gating-induced P → BM transformations across almost the entire La1-xSrxCoO3 phase diagram (0 ≤ x ≤ 0.70), under both tensile and compressive epitaxial strain. Electronic transport, magnetometry, and operando synchrotron X-ray diffraction establish that voltage-induced P → BM transformations are possible at essentially all x, including x ≤ 0.50, where both P and BM phases are highly stable. Under small compressive strain, the transformation threshold voltage decreases from approximately +2.7 V at x = 0 to negligible at x = 0.70. Both larger compressive strain and tensile strain induce further threshold voltage lowering, particularly at low x. The P → BM threshold voltage is thus tunable, via both composition and strain. At x = 0.50, voltage-controlled ferromagnetism, transport, and optical transmittance are then demonstrated, achieving Curie temperature and resistivity modulations of ∼220 K and at least 5 orders of magnitude, respectively, and enabling estimation of the voltage-dependent Co valence. The results are analyzed in the context of doping- and strain-dependent oxygen vacancy formation energies and diffusion coefficients, establishing that it is thermodynamic factors, not kinetics, that underpin the decrease in the threshold voltage with x, that is, with increasing formal Co valence. These findings substantially advance the practical and mechanistic understanding of this voltage-driven transformation, with fundamental and technological implications.

2.
Sci Adv ; 2(8): e1600782, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27536726

RESUMEN

Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.


Asunto(s)
Conductividad Eléctrica , Electrones , Modelos Teóricos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA