Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 133815, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38428294

RESUMEN

Molten salt pyrolysis technology stands out as a potent approach for achieving efficient degradation and energy recovery of composite organic materials. Nevertheless, challenges such as the high melting point of molten salt, product destruction, and the complexities of treating waste salt pose significant limitations to the widespread application and popularization of this technology. To tackle these issues, this study proposes a salt-assisted pyrolysis method based on capillary heat transfer called permeable liquid salt pyrolysis. Focusing on abandoned power industry insulators, the research delves into the thermal and mass transfer model of cluster-embedded materials under non-molten salt conditions. The investigation reveals that the capillary between glass fiber and resin proves beneficial in enhancing heat transfer conditions by creating a novel phase known as permeate liquid. Results demonstrate that salt-assisted pyrolysis can substantially lower the required temperature and enhance the pyrolysis reaction rate, achieving a maximum degradation efficiency of 98.99 %. Additionally, the pyrolysis products undergo in-situ modification, with a notable reduction in benzene series compounds ranging from 68 % to 85 %. Furthermore, an erosion diffusion capillary mode is established. This study presents an environmentally-friendly approach to recycle and modify products derived from waste resin-based composite materials generated in the electric power industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA