Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 22(4): 450-458, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35739274

RESUMEN

Two-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate the nucleation and growth rate. Based on the growth mechanism, 67 types of TMCs and TMPCs with a defined phase, controllable structure and tunable component can be realized. The ferromagnetism and superconductivity in FeXy can be tuned by the y value, such as superconductivity observed in FeX and ferromagnetism in FeS2 monolayers, demonstrating the high quality of as-grown 2D materials. This work paves the way for the multidisciplinary exploration of 2D TMPCs and TMCs with unique properties.

2.
Nature ; 556(7701): 355-359, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670263

RESUMEN

Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect1,2, valley polarization3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices6-10. However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization11-15, selenization16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS2 and WSe2. Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe2 and MoTe2 samples21,22 and of high mobilities in MoS2 and ReS2. Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

3.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675036

RESUMEN

Anthocyanin is a natural antioxidant agent extracted from the fruits of Sambucus canadensis, which has been considered to have potential anti-aging effects. Cell senescence is the primary cause of aging and related diseases. Recently, research on the development of compounds for eliminating senescent cells or damaged organs have shown prospects. The compounds which promote the clearing of senescent cells are called "senolytics". Though anthocyanin is considered to have potential anti-aging effects owing to its anti-inflammatory and antioxidant activities, the mechanism of the elimination of senescent cells remains unclear. In this study, we prepared anthocyanins extracted from the fruits of Sambucus canadensis and evaluated their anti-aging effects in vivo and in vitro. We found that anthocyanin could significantly reduce cell senescence and aging of the lens by inhibiting the activity of the PI3K/AKT/mTOR signaling pathway, consequently promoting the apoptosis of senescent cells, increasing the autophagic and mitophagic flux, and enhancing the renewal of mitochondria and the cell to maintain cellular homeostasis, leading to attenuating aging. Therefore, our study provided a basis for anthocyanin to be used as new "senolytics" in anti-aging.


Asunto(s)
Antocianinas , Sambucus , Antocianinas/farmacología , Antioxidantes/farmacología , Fosfatidilinositol 3-Quinasas , Senescencia Celular , Estrés Oxidativo
4.
Biomacromolecules ; 23(9): 3752-3765, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36001455

RESUMEN

To enhance the efficacy of tumor therapy, the collection of functional components into a targeting system shows advantages over most homogeneous materials in inducing apoptosis of cancer cells. The security and targeting of therapeutic agents also require the effect combination of additional components. However, the construction of multifunctional composites in a simple system with intelligent cooperative responsiveness remains a challenge. Herein, a reduced polyanionic cluster (rP2W18) bearing the absorption at the near infrared (NIR) II region is used as a core carrier to bind the positively charged doxorubicin hydrochloride (DOX) through ionic interaction. To reduce the physiological toxicity, hyaluronic acid grafting ß-cyclodextrin side chains is used to cover the ionic complex through host-guest inclusion to DOX. When the nanocomposite is activated by local laser exposure, the final three-component therapeutic agent is demonstrated to present targeted photothermal conversion capability and chemodynamic activity together with chemotherapy. With the controlled release of DOX under the stimulation of mild acidity in the tumor region and photothermal effect, the exposed rP2W18 is aroused by hydrogen peroxide overexpressed in a tumor microenvironment to produce toxic reactive oxygen species, 1O2. This work presents an opportunity for the development of a nanocomposite in NIR-II photothermal/chemo-therapy and chemodynamic synergistic therapy.


Asunto(s)
Nanopartículas , Neoplasias , Aniones , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Ácido Hialurónico/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fototerapia , Polielectrolitos , Microambiente Tumoral
5.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805987

RESUMEN

Ultraviolet (UV) radiation is a major cause of photoaging that can induce DNA damage, oxidative stress, and cellular aging. Metformin (MF) can repair DNA damage, scavenge reactive oxygen species (ROS), and protect cells. However, the mechanism by which MF inhibits cell senescence in chronic skin damage induced by UVA is unclear. In this study, human foreskin fibroblasts (HFFs) treated with UVA were used as an in vitro model and UVA-induced skin photoaging in Kunming mice was used as an in vivo model to investigate the potential skin protective mechanism of MF. The results revealed that MF treatment attenuated UVA-induced cell viability, skin aging, and activation of the PI3K/AKT/mTOR signaling pathway. Furthermore, MF treatment alleviated the mitochondrial oxidative stress and decreased mitophagy. Knockdown of Parkin by siRNA increased the clearance of MF in senescent cells. The treatment of Kunming mice with MF at a dose of 10 mg/kg/day significantly reduced UVA-induced skin roughness, epidermal thinning, collagen degradation, and skin aging. In conclusion, our experimental results suggest that MF exerts anti-photoaging effects by inhibiting mitophagy and the PI3K/AKT/mTOR signaling pathway. Therefore, our study improves the current understanding of the protective mechanism of MF against photoaging.


Asunto(s)
Metformina , Envejecimiento de la Piel , Enfermedades de la Piel , Animales , Fibroblastos/metabolismo , Metformina/metabolismo , Metformina/farmacología , Ratones , Mitofagia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piel , Enfermedades de la Piel/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Rayos Ultravioleta/efectos adversos
6.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163244

RESUMEN

Interactions between the mitochondrial inner and outer membranes and between mitochondria and other organelles closely correlates with the sensitivity of ovarian cancer to cisplatin and other chemotherapeutic drugs. However, the underlying mechanism remains unclear. Recently, the mitochondrial protease OMA1, which regulates internal and external signals in mitochondria by cleaving mitochondrial proteins, was shown to be related to tumor progression. Therefore, we evaluated the effect of OMA1 on the response to chemotherapeutics in ovarian cancer cells and the mouse subcutaneous tumor model. We found that OMA1 activation increased ovarian cancer sensitivity to cisplatin in vivo and in vitro. Mechanistically, in ovarian cancer, OMA1 cleaved optic atrophy 1 (OPA1), leading to mitochondrial inner membrane cristae remodeling. Simultaneously, OMA1 induced DELE1 cleavage and its cytoplasmic interaction with EIF2AK1. We also demonstrated that EIF2AK1 cooperated with the ER stress sensor EIF2AK3 to amplify the EIF2S1/ATF4 signal, resulting in the rupture of the mitochondrial outer membrane. Knockdown of OMA1 attenuated these activities and reversed apoptosis. Additionally, we found that OMA1 protease activity was regulated by the prohibitin 2 (PHB2)/stomatin-like protein 2 (STOML2) complex. Collectively, OMA1 coordinates the mitochondrial inner and outer membranes to induce ovarian cancer cell death. Thus, activating OMA1 may be a novel treatment strategy for ovarian cancer.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias Ováricas/metabolismo , Prohibitinas/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis/fisiología , Línea Celular , Línea Celular Tumoral , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Ratones , Membranas Mitocondriales/metabolismo
7.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328718

RESUMEN

Chemotherapeutic drug-induced p53-dependent crosstalk among tumor cells affects the sensitivity of tumor cells to chemotherapeutic drugs, contributing to chemoresistance. Therefore, pharmacological targeting of p53 may contribute to overcoming drug resistance. The localization of p53 is closely related to its function. Thus, we assessed the effect of p62 on the coordination of p53 mitochondrial localization under chemotherapeutic drug treatment in ovarian cancer cells. We found that the combined use of the proteasome inhibitor epoxomicin and cisplatin led to the accumulation of p53 and sequestosome1(p62) in the mitochondria, downregulated mitochondrial DNA (mtDNA) transcription, inhibited mitochondrial functions, and ultimately promoted apoptosis by enhancing cisplatin sensitivity in ovarian cancer cells. Moreover, the ubiquitin-associated (UBA) domain of p62 was involved in regulating the mitochondrial localization of p53. Our findings suggest that the interaction between p62 and p53 may be a mechanism that determines the fate of tumor cells. In conclusion, p62 coordinated the mitochondrial localization of p53 through its UBA domain, inhibited mtDNA transcription, downregulated mitochondrial function, and promoted ovarian cancer cell death. Our study demonstrates the important role of p53 localization in tumor cell survival and apoptosis, and provides new insights into understanding the anti-tumor mechanism of targeting the ubiquitin-proteasome system in tumor cells.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/uso terapéutico , ADN Mitocondrial/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233059

RESUMEN

Skeletal muscles require muscle satellite cell (MuSC) differentiation to facilitate the replenishment and repair of muscle fibers. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Although mitochondria have been reported to be involved in myogenic differentiation by promoting a bioenergetic remodeling, little is known about the interplay of mitochondrial proteostasis and myogenic differentiation. High-temperature-requirement protein A2 (HtrA2/Omi) is a protease that regulates proteostasis in the mitochondrial intermembrane space (IMS). Mice deficient in HtrA2 protease activity show a distinct phenotype of sarcopenia. To investigate the role of IMS proteostasis during myogenic differentiation, we treated C2C12 myoblasts with UCF101, a specific inhibitor of HtrA2 during differentiation process. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Further, CHOP, p-eIF2α, and other mitochondrial unfolded protein response (UPRmt)-related proteins are upregulated. Therefore, we suggest that imbalance of mitochondrial IMS proteostasis acts via a retrograde signaling pathway to inhibit myogenic differentiation via the UPRmt pathway. These novel mechanistic insights may have implications for the development of new strategies for the treatment of sarcopenia.


Asunto(s)
Serina Peptidasa A2 que Requiere Temperaturas Altas , Proteínas Mitocondriales , Sarcopenia , Animales , Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Ratones , Proteínas Mitocondriales/metabolismo , Péptido Hidrolasas
9.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555672

RESUMEN

The metabolism and apoptosis of tumor cells are important factors that increase their sensitivity to chemotherapeutic drugs. p53 and cisplatin not only induce tumor cell apoptosis, but also regulate the tumor cell metabolism. The TP53-induced glycolysis and apoptosis regulator (TIGAR) can inhibit glycolysis and promote more glucose metabolism in the pentose phosphate pathway. We speculate that the regulation of the TIGAR by the combination therapy of p53 and cisplatin plays an important role in increasing the sensitivity of tumor cells to cisplatin. In this study, we found that the combined treatment of p53 and cisplatin was able to inhibit the mitochondrial function, promote mitochondrial pathway-induced apoptosis, and increase the sensitivity. Furthermore, the expression of the TIGAR was inhibited after a combined p53 and cisplatin treatment, the features of the TIGAR that regulate the pentose phosphate pathway were inhibited, the glucose flux shifted towards glycolysis, and the localization of the complex of the TIGAR and Hexokinase 2 (HK2) on the mitochondria was also reduced. Therefore, the combined treatment of p53 and cisplatin may modulate a glycolytic flux through the TIGAR, altering the cellular metabolic patterns while increasing apoptosis. Taken together, our findings reveal that the TIGAR may serve as a potential therapeutic target to increase the sensitivity of lung cancer A549 cells to cisplatin.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Cisplatino , Neoplasias Pulmonares , Monoéster Fosfórico Hidrolasas , Humanos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Glucólisis , Neoplasias Pulmonares/tratamiento farmacológico , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
10.
J Biochem Mol Toxicol ; 35(10): e22887, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34392578

RESUMEN

Diabetic cardiomyopathy (DCM), a diabetes complication, accounts for diabetes-associated morbidity, mortality, and heart failure. Biflavonoids have been demonstrated to possess extensive pharmacological properties, such as antidiabetic and antioxidant activities. Our study aimed to explore the effects of sciadopitysin, a type of biflavonoid, on DCM and the mechanism involved. An experimental cell model was established in AC16 cardiomyocytes by exposure to high glucose (HG). Cell injury was estimated by detecting cell viability and lactate dehydrogenase (LDH) release. Oxidative stress was determined by measuring malondialdehyde (MDA) level and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). Apoptosis was assessed by flow cytometry analysis, caspase-3/7 activity assay, and Western blot analysis of cytochrome C (Cyt C) expression. Alternation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB)/glycogen synthase kinase-3ß (GSK-3ß) pathway was detected by Western blot. Results showed that HG exposure reduced viability and increased LDH release in AC16 cells, which was abolished by sciadopitysin treatment. Sciadopitysin inhibited HG-induced oxidative stress, as evidenced by the reduced MDA content, and the increased activities of SOD, CAT, and GSH-Px. Sciadopitysin suppressed HG-induced apoptosis, an increase of caspase-3/7 activity, and Cyt C expression in AC16 cells. Mechanistically, sciadopitysin activated the PI3K/PKB/GSK-3ß pathway under HG stimulation in AC16 cells. Inhibition of PI3K/PKB/GSK-3ß pathway by LY294002 blocked the effects of sciadopitysin on HG-induced injury, oxidative stress, and apoptosis in AC16 cells. Summarily, sciadopitysin alleviated HG-caused oxidative stress and apoptosis in cardiomyocytes by activating the PI3K/PKB/GSK-3ß pathway.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Biflavonoides/farmacología , Glucosa/efectos adversos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromonas/farmacología , Cardiomiopatías Diabéticas/metabolismo , Glucosa/metabolismo , Humanos , Morfolinas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología
11.
BMC Cardiovasc Disord ; 21(1): 50, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33499803

RESUMEN

BACKGROUND: To identify the association between tricuspid annular circumference and secondary tricuspid regurgitation and analyze the risk factors of recurrent tricuspid regurgitation after concomitant tricuspid annuloplasty during left heart surgery. METHODS: From October 2018 to June 2019, a total of 117 patients receiving concomitant tricuspid annuloplasty within left heart surgery were enrolled. Severity of tricuspid regurgitation was classified as 4 subtypes: normal, mild, moderate and severe. Perioperative data and mid-term outcome were collected. Tricuspid annular circumference (TAC) was measured under cardiac arrest during surgery procedure by cardioplegia. Optimal TAC and TAC index (TAC/body surface area, BSA) cutoffs of significant tricuspid annulus dilatation (moderate and severe) were obtained. Univariable and multivariable logistic regression analyses were performed to identify the risk factors of postoperative recurrent tricuspid regurgitation. The follow up period is 13-19 months (mean 15.5 ± 3.2 months). RESULTS: There was 1 patient was excluded who died after surgery. A total of 116 patients receiving tricuspid annuloplasty were included. Optimal cutoffs of significant tricuspid annulus dilatation were recommended (TAC 11.45 cm, Sensitivity 82.89%, Specificity 73.68%, AUC 0.915; TAC index 7.09 cm/m2, Sensitivity 73.68%, Specificity 85%, AUC 0.825, respectively). Based on findings of multivariable logistic regression, it has been showed that TAC index and postoperative atrial fibrillation were the independent risk factors of recurrent regurgitation after surgery. Optimal TAC index cutoff to predict recurrent tricuspid regurgitation was 7.86 cm/m2 CONCLUSIONS: The severity of secondary tricuspid regurgitation is associated with the tricuspid annular circumference. The cut-offs of significant tricuspid regurgitation (more than moderate) were TAC 11.45 cm and TAC index 7.09 cm/m2, respectively. Clinically, concomitant tricuspid annuloplasty is relative safe and effective. TAC index ≥ 7.86 cm/m2 and postoperative atrial fibrillation are the risk factors of recurrent significant tricuspid regurgitation after concomitant tricuspid annuloplasty during left heart surgery.


Asunto(s)
Anuloplastia de la Válvula Cardíaca/efectos adversos , Complicaciones Posoperatorias/etiología , Insuficiencia de la Válvula Tricúspide/cirugía , Válvula Tricúspide/cirugía , Anciano , Ecocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/fisiopatología , Recurrencia , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores de Tiempo , Resultado del Tratamiento , Válvula Tricúspide/diagnóstico por imagen , Válvula Tricúspide/fisiopatología , Insuficiencia de la Válvula Tricúspide/diagnóstico por imagen , Insuficiencia de la Válvula Tricúspide/fisiopatología
12.
Environ Toxicol ; 36(11): 2236-2244, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34323000

RESUMEN

Previous studies have identified the dysregulation of various circRNAs in many types of human cancers including thyroid cancer (TC). Circular RNA ZFR (circZFR) serves as an oncogenic circRNA in TC. However, the detailed molecular mechanism of circZFR in TC progression remains to be further explored. CircZFR and miR-16 expressions in TC cells were analyzed through qRT-PCR. Cell viability, invasion, and apoptosis were detected using CCK-8, transwell invasion assay, and flow cytometry analysis, respectively. The relationship between circZFR and miR-16 was explored using luciferase reporter assay, RNA pull-down assay, and qRT-PCR. The relationship between miR-16 and mitogen-activated protein kinase 1 (MAPK1) was explored using luciferase reporter assay and western blot analysis. Results showed that circZFR was upregulated and miR-16 was downregulated in TC cells. CircZFR knockdown inhibited the viability and invasion and induced apoptosis in TC cells. CircZFR inhibited miR-16 expression by sponging miR-16 and miR-16 repressed MAPK1 expression by targeting MAPK1. Moreover, circZFR positively regulated MAPK1 expression in TC cells by serving as a ceRNA of miR-16. Mechanistically, circZFR knockdown-induced inhibition of cell viability and invasion and promotion of apoptosis were overturned after miR-16 downregulation and promotion of MAPK1. Collectively, circZFR knockdown retarded TC progression by sponging miR-16 and modulating MAPK1 expression.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Línea Celular Tumoral , Proliferación Celular , Humanos , MicroARNs/genética , Proteína Quinasa 1 Activada por Mitógenos , ARN Circular , Neoplasias de la Tiroides/genética
13.
Nature ; 515(7527): 414-8, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25132547

RESUMEN

Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Trastornos Mentales/patología , Sinapsis/patología , Animales , Diferenciación Celular , Fibroblastos , Glutamina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Linaje , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Unión Proteica , Sinapsis/metabolismo , Transcriptoma
14.
Exp Cell Res ; 367(2): 137-149, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29580688

RESUMEN

Increasing evidence suggests that mitochondrial respiratory chain complex I participates in carcinogenesis and cancer progression by providing energy and maintaining mitochondrial function. However, the role of complex I in ovarian cancer is largely unknown. In this study we showed that metformin, considered to be an inhibitor of complex I, simultaneously inhibited cell growth and induced mitochondrial-related apoptosis in human ovarian cancer cells. Metformin interrupted cellular energy metabolism mainly by causing damage to complex I that impacted mitochondrial function. Additionally, treatment with metformin increased the activation of sirtuin 3 (SIRT3), a mitochondrial deacetylase. We demonstrated that SIRT3 overexpression aggravated metformin-induced apoptosis, energy stress and mitochondrial dysfunction. Moreover, treatment with metformin or SIRT3 overexpression increased activation of AMP-activated protein kinase (AMPK), a major sensor of cellular energy status. AMPK compensated for energy loss by increasing glycolysis. The impact of this was assessed by reducing glucose levels in the media or by using inhibitors (2-deoxyglucose, Compound C) of glycolysis and AMPK. The combination of these factors with metformin intensified cytotoxicity through further downregulation of ATP. Our study outlines an important role for SIRT3 in the antitumor effect of mitochondrial complex I inhibitors in human ovarian cancer cells. This effect appears to be mediated by induction of energy stress and apoptosis. Strategies that target the mitochondria could be enhanced by modulating glycolysis to further aggravate energy stress that may increase the antitumor effect.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Metformina/farmacología , Mitocondrias/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Sirtuina 3/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Mitocondrias/metabolismo , Neoplasias Ováricas/patología , Sirtuina 3/biosíntesis , Estrés Fisiológico
15.
J Neurosci ; 36(45): 11427-11434, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27911745

RESUMEN

Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons.


Asunto(s)
Encéfalo/fisiología , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica/genética , Modelos Genéticos , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Animales , Humanos
16.
Apoptosis ; 21(2): 225-38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26573276

RESUMEN

S1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner. Autophagy precedes apoptosis, in SKOV3 cells treated with S1 (6 µmol/L), autophagy reached the maximum peak at 12 h after treatment and decreased to 24 h. In SKOV3 cells treated with different concentrations of S1 for 24 h, the highest level of autophagy was observed with 5 µmol/L and decreased to 10 µmol/L. Autophagy inhibitors 3-MA and CQ enhanced apoptosis induced by S1 in SKOV3 cells. However, overactivation of caspases in apoptosis induced by S1 may inhibit the autophagy-inducing function of Beclin1. Because the pan-caspase inhibitor Z-VAD recovered the autophagy-inducing function of Beclin1 through reduction of activated caspase-mediated cleavage of Beclin1. Furthermore, the Beclin1 cleavage products could further increase apoptosis induced by S1 in SKOV3 cells. This indicates that apoptosis induced by high doses and long exposure of S1 causes the overactivation of caspases and subsequent cleavage of Beclin1, and inhibits the protection of autophagy. Moreover, the cleaved product of Beclin1 further promotes apoptosis induced by S1 in SKOV3 cells. Our results suggest this may be a molecular mechanism for enhancing the sensitivity of cancer cells to apoptosis induced by small molecular compound targeting Bcl-2.


Asunto(s)
Acenaftenos/farmacología , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Autofagia , Caspasa 3/fisiología , Proteínas de la Membrana/metabolismo , Pirroles/farmacología , Beclina-1 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Ováricas , Proteolisis
17.
Cell Physiol Biochem ; 38(2): 589-97, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26845340

RESUMEN

BACKGROUND/AIMS: Insulin-like growth factor-1 (IGF-1) has an important role in cells' proliferation, differentiation and apoptosis, and it may be involved in carcinogenesis. Several epidemiological studies assessed the association between circulating IGF-1 level and ovarian cancer risk, but there was still no conclusive finding. METHODS: A meta-analysis of published studies was performed to assess the association between circulating IGF-1 level and ovarian cancer risk. The summary odds ratio (OR) with 95% confidence interval (95%CI) was calculated through meta-analysis to evaluate the strength of the association. RESULTS: Five eligible studies were included into the meta-analysis, which involved a total of 2,028 cases of ovarian cancer and 4,625 controls. Meta-analysis of total 5 studies showed that high circulating IGF-1 level was correlated with decreased risk of ovarian cancer (OR = 0.84, 95%CI 0.74-0.97, P = 0.013). After adjusting for heterogeneity, high circulating IGF-1 level was still correlated with decreased risk of ovarian cancer (OR = 0.83, 95%CI 0.72-0.95, P = 0.007). Subgroup analysis by age showed that circulating IGF-1 level was not correlated with ovarian cancer risk in women both less than 55 years and more than 55 years. However, after adjusting for heterogeneity, high circulating IGF-1 level was correlated with decreased ovarian cancer risk in women less than 55 years (OR = 0.82, 95%CI 0.72-0.94, P = 0.004). CONCLUSION: Our meta-analysis suggests that high circulating IGF-1 level may be correlated with decreased ovarian cancer risk, especially in women less than 55 years. More studies are needed to further assess the association between circulating IGF-1 level and ovarian cancer risk in the future.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/análisis , Neoplasias Ováricas/sangre , Neoplasias Ováricas/epidemiología , Factores de Edad , Femenino , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Neoplasias Ováricas/diagnóstico , Ovario/patología , Factores de Riesgo
18.
Cell Physiol Biochem ; 39(6): 2398-2408, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832653

RESUMEN

BACKGROUND: Differential diagnosis of ovarian masses can influence both treatment selection and prognosis of ovarian tumor patients. A comprehensive review was performed with respect to the diagnostic value of conventional ultrasonography, Doppler ultrasonography and contrast-enhanced ultrasonography (CEUS) in differentiating benign from malignant ovarian masses. METHODS: Databases were searched for relevant articles. Retrieved studies were screened according to the inclusion criteria. Pooled statistics including specificity, sensitivity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), diagnostic odds ratio (DOR) and area under curve (AUC) were utilized to calculate the overall diagnostic value for each diagnostic approach. RESULTS: Sixty-seven high quality articles were finally enrolled in the present meta-analysis. The sensitivity and specificity of conventional US were 0.92 and 0.86, respectively. The corresponding sensitivity and specificity of Doppler US were 0.93 and 0.85, respectively. Additionally, these figures for CEUS were 0.97 and 0.92, respectively. Finally, the AUC values for conventional US, Doppler US and CEUS were 0.95, 0.96 and 0.99, respectively. CONCLUSION: All of the three US-related imaging modalities have relatively high diagnostic value in distinguishing malignant tumors from benign ones in ovarian tumors.


Asunto(s)
Medios de Contraste/química , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/diagnóstico , Diagnóstico Diferencial , Femenino , Humanos , Neoplasias Ováricas/patología , Sesgo de Publicación , Curva ROC , Sensibilidad y Especificidad , Ultrasonografía Doppler
19.
Exp Cell Res ; 335(1): 68-81, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25936772

RESUMEN

Cholangiocarcinoma responses weakly to cisplatin. Mitochondrial dynamics participate in the response to various stresses, and mainly involve mitophagy and mitochondrial fusion and fission. Bcl-2 family proteins play critical roles in orchestrating mitochondrial dynamics, and are involved in the resistance to cisplatin. Here we reported that ABT737, combined with cisplatin, can promote cholangiocarcinoma cells to undergo apoptosis. We found that the combined treatment decreased the Mcl-1 pro-survival form and increased Bak. Cells undergoing cisplatin treatment showed hyperfused mitochondria, whereas fragmentation was dominant in the mitochondria of cells exposed to the combined treatment, with higher Fis1 levels, decreased Mfn2 and OPA1 levels, increased ratio of Drp1 60kD to 80kD form, and more Drp1 located on mitochondria. More p62 aggregates were observed in cells with fragmented mitochondria, and they gradually translocated to mitochondria. Mitophagy was induced by the combined treatment. Knockdown p62 decreased the Drp1 ratio, increased Tom20, and increased cell viability. Our data indicated that mitochondrial dynamics play an important role in the response of cholangiocarcinoma to cisplatin. ABT737 might enhance cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics and the balance within Bcl-2 family proteins. Furthermore, p62 seems to be critical in the regulation of mitochondrial dynamics.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Compuestos de Bifenilo/administración & dosificación , Colangiocarcinoma/tratamiento farmacológico , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Nitrofenoles/administración & dosificación , Sulfonamidas/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Dinaminas , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Piperazinas/administración & dosificación , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Superficie Celular/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/biosíntesis
20.
Angew Chem Int Ed Engl ; 55(16): 4967-71, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26971863

RESUMEN

A low-temperature topochemical reduction strategy is used herein to prepare unconventional phosphors with luminescence covering the biological and/or telecommunications optical windows. This approach is demonstrated by using Bi(III)-doped Y2O3 (Y(2-x)Bi(x)O3) as a model system. Experimental results suggest that topochemical treatment of Y(2-x)Bi(x)O3 using CaH2 creates randomly distributed oxygen vacancies in the matrix, resulting in the change of the oxidation states of Bi to lower oxidation states. The change of the Bi coordination environments from the [BiO6] octahedra in Y(2-x)Bi(x)O3 to the oxygen-deficient [BiO(6-z)] polyhedra in reduced phases leads to a shift of the emission maximum from the visible to the near-infrared region. The generality of this approach was further demonstrated with other phosphors. Our findings suggest that this strategy can be used to explore Bi-doped or other classes of luminescent systems, thus opening up new avenues to develop novel optical materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA