Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594370

RESUMEN

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Asunto(s)
Resistencia a Antineoplásicos , Amplificación de Genes , Metotrexato , Tetrahidrofolato Deshidrogenasa , Humanos , Metotrexato/farmacología , Resistencia a Antineoplásicos/genética , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Antimetabolitos Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica/métodos
2.
J Cell Mol Med ; 27(16): 2424-2436, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386793

RESUMEN

The locus at 17q12 erb-b2 receptor tyrosine kinase 2 (ERBB2) has been heavily amplificated and overexpressed in gastric cancer (GC), but it remains to be elucidated about the clinical significance of the co-amplification and co-overexpression of PGAP3 gene located around ERBB2 in GC. The profile of PGAP3 and ERBB2 in four GC cell lines and tissue microarrays containing 418 primary GC tissues was assessed to investigate the co-overexpression and clinical significance of the co-amplified genes, and to evaluate the impact of the co-amplified genes on the malignancy of GC. Co-amplification of PGAP3 and ERBB2 accompanied with co-overexpression was observed in a haploid chromosome 17 of NCI-N87 cells with double minutes (DMs). PGAP3 and ERBB2 were overexpressed and positively correlated in 418 GC patients. Co-overexpression of the PGAP3 and ERBB2 was correlated with T stage, TNM stage, tumour size, intestinal histological type and poor survival proportion in 141 GC patients. In vitro, knockdown of the endogenous PGAP3 or ERBB2 decreased cell proliferation and invasion, increased G1 phase accumulation and induced apoptosis in NCI-N87 cells. Furthermore, combined silencing of PGAP3 and ERBB2 showed an additive effect on resisting proliferation of NCI-N87 cells compared with targeting ERBB2 or PGAP3 alone. Taken together, the co-overexpression of PGAP3 and ERBB2 may be crucial due to its significant correlation with clinicopathological factors of GC. Haploid gain of PGAP3 co-amplified with ERBB2 is sufficient to facilitate the malignancy and progression of GC cells in a synergistic way.


Asunto(s)
Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Hidrolasas de Éster Carboxílico , Receptores de Superficie Celular
3.
BMC Gastroenterol ; 21(1): 354, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579655

RESUMEN

BACKGROUND: DAL-1 gene was reported to inhibit proliferation, migration, invasion, and epithelial to mesenchymal transition (EMT) of gastric cancer (GC) cells in our previous study. The association between the genomic variants in DAL-1 gene with risk of GC is still unclear. METHODS: In this study, 505 GC cases and 544 healthy controls (HCs) were collected to evaluate the association between six single nucleotide polymorphisms (SNPs) (rs7240736, rs73937194, rs3817466, rs8082898, rs73381527, rs9953490) of DAL-1 gene and GC risk in the Han population in Northeast China. RESULTS: The TA + AA genotypes of rs9953490 were significantly associated with an increased risk in N3 compared with N0 subgroup (adjusted OR = 4.56, 95% CI = 1.49-13.98, P = 0.008), and also showed evident association with an increased risk in TNM stage III compared with stage I-II (adjusted OR = 2.33, 95% CI = 1.16-4.67, P = 0.017). CONCLUSION: The rs9953490 of DAL-1 gene may play an important role in the occurrence and development of GC in the Han population in Northeast China.


Asunto(s)
Neoplasias Gástricas , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Transición Epitelial-Mesenquimal , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Proteínas de Microfilamentos , Polimorfismo de Nucleótido Simple , Neoplasias Gástricas/genética
4.
J Cell Mol Med ; 24(24): 14205-14216, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124133

RESUMEN

Gene amplification chiefly manifests as homogeneously stained regions (HSRs) or double minutes (DMs) in cytogenetically and extrachromosomal DNA (ecDNA) in molecular genetics. Evidence suggests that gene amplification is becoming a hotspot for cancer research, which may be a new treatment strategy for cancer. DMs usually carry oncogenes or chemoresistant genes that are associated with cancer progression, occurrence and prognosis. Defining the molecular structure of DMs will facilitate understanding of the molecular mechanism of tumorigenesis. In this study, we re-identified the origin and integral sequence of DMs in human colorectal adenocarcinoma cell line NCI-H716 by genetic mapping and sequencing strategy, employing high-resolution array-based comparative genomic hybridization, high-throughput sequencing, multiplex-fluorescence in situ hybridization and chromosome walking techniques. We identified two distinct populations of DMs in NCI-H716, confirming their heterogeneity in cancer cells, and managed to construct their molecular structure, which were not investigated before. Research evidence of amplicons distribution in two different populations of DMs suggested that a multi-step evolutionary model could fit the module of DM genesis better in NCI-H716 cell line. In conclusion, our data implicated that DMs play a very important role in cancer progression and further investigation is necessary to uncover the role of the DMs.


Asunto(s)
Neoplasias Colorrectales/genética , Evolución Molecular , Amplificación de Genes , Secuencia de Bases , Línea Celular Tumoral , Aberraciones Cromosómicas , Puntos de Rotura del Cromosoma , Paseo de Cromosoma , Cromosomas Humanos Par 10 , Cromosomas Humanos Par 8 , Neoplasias Colorrectales/patología , Hibridación Genómica Comparativa , Análisis Citogenético/métodos , Humanos , Hibridación Fluorescente in Situ
5.
J Pathol ; 235(1): 14-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25214430

RESUMEN

Double minute chromosomes (DMs) are extrachromosomal cytogenetic structures found in tumour cells. As hallmarks of gene amplification, DMs often carry oncogenes and drug-resistance genes and play important roles in malignant tumour progression and drug resistance. The mitogen-activated protein kinase (MAPK) signalling pathway is frequently dysregulated in human malignant tumours, which induces genomic instability, but it remains unclear whether a close relationship exists between MAPK signalling and DMs. In the present study, we focused on three major components of MAPK signalling, ERK1/2, JNK1/2/3 and p38, to investigate the relationship between MAPK and DM production in tumour cells. We found that the constitutive phosphorylation of ERK1/2, but not JNK1/2/3 and p38, was closely associated with DMs in tumour cells. Inhibition of ERK1/2 activation in DM-containing and ERK1/2 constitutively phosphorylated tumour cells was able to markedly decrease the number of DMs, as well as the degree of amplification and expression of DM-carried genes. The mechanism was found to be an increasing tendency of DM DNA to break, become enveloped into micronuclei (MNs) and excluded from the tumour cells during the S/G2 phases of the cell cycle, events that accompanied the reversion of malignant behaviour. Our study reveals a linkage between ERK1/2 activation and DM stability in tumour cells.


Asunto(s)
Ciclo Celular/genética , Cromosomas Humanos/genética , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias/metabolismo , Transducción de Señal/genética , Línea Celular Tumoral , Núcleo Celular/genética , Activación Enzimática , Femenino , Amplificación de Genes/genética , Humanos , Fosforilación
6.
J Med Genet ; 52(2): 135-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25537274

RESUMEN

BACKGROUND: Gene amplification is a frequent manifestation of genomic instability that plays a role in tumour progression and development of drug resistance. It is manifested cytogenetically as extrachromosomal double minutes (DMs) or intrachromosomal homogeneously staining regions (HSRs). To better understand the molecular mechanism by which HSRs and DMs are formed and how they relate to the development of methotrexate (MTX) resistance, we used two model systems of MTX-resistant HT-29 colon cancer cell lines harbouring amplified DHFR primarily in (i) HSRs and (ii) DMs. RESULTS: In DM-containing cells, we found increased expression of non-homologous end joining (NHEJ) proteins. Depletion or inhibition of DNA-PKcs, a key NHEJ protein, caused decreased DHFR amplification, disappearance of DMs, increased formation of micronuclei or nuclear buds, which correlated with the elimination of DHFR, and increased sensitivity to MTX. These findings indicate for the first time that NHEJ plays a specific role in DM formation, and that increased MTX sensitivity of DM-containing cells depleted of DNA-PKcs results from DHFR elimination. Conversely, in HSR-containing cells, we found no significant change in the expression of NHEJ proteins. Depletion of DNA-PKcs had no effect on DHFR amplification and resulted in only a modest increase in sensitivity to MTX. Interestingly, both DM-containing and HSR-containing cells exhibited decreased proliferation upon DNA-PKcs depletion. CONCLUSIONS: We demonstrate a novel specific role for NHEJ in the formation of DMs, but not HSRs, in MTX-resistant cells, and that NHEJ may be targeted for the treatment of MTX-resistant colon cancer.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Reparación del ADN por Unión de Extremidades/genética , Resistencia a Antineoplásicos/genética , Metotrexato/farmacología , Metotrexato/uso terapéutico , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Amplificación de Genes/efectos de los fármacos , Células HT29 , Humanos , Coloración y Etiquetado
7.
Int J Cancer ; 134(6): 1279-88, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24027017

RESUMEN

Double minute chromosomes (DMs) are a hallmark of gene amplification. The relationship between the formation of DMs and the amplification of DM-carried genes remains to be clarified. The human colorectal cancer cell line NCI-H716 and human malignant primitive neuroectodermal tumor cell line SK-PN-DW are known to contain many DMs. To examine the amplification of DM-carried genes in tumor cells, we performed Affymetrix SNP Array 6.0 analyses and verified the regions of amplification in NCI-H716 and SK-PN-DW tumor cells. We identified the amplification regions and the DM-carried genes that were amplified and overexpressed in tumor cells. Using RNA interference, we downregulated seven DM-carried genes, (NDUFB9, MTSS1, NSMCE2, TRIB1, FAM84B, MYC and FGFR2) individually and then investigated the formation of DMs, the amplification of the DM-carried genes, DNA damage and the physiological function of these genes. We found that suppressing the expression of DM-carried genes led to a decrease in the number of DMs and reduced the amplification of the DM-carried genes through the micronuclei expulsion of DMs from the tumor cells. We further detected an increase in the number of γH2AX foci in the knockdown cells, which provides a strong link between DNA damage and the loss of DMs. In addition, the loss of DMs and the reduced amplification and expression of the DM-carried genes resulted in a decrease in cell proliferation and invasion ability.


Asunto(s)
Biomarcadores de Tumor/genética , Cromosomas Humanos/genética , Neoplasias Colorrectales/patología , Amplificación de Genes , Micronúcleos con Defecto Cromosómico , Tumores Neuroectodérmicos Primitivos/patología , Polimorfismo de Nucleótido Simple/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Ciclo Celular , Movimiento Celular , Núcleo Celular/genética , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Daño del ADN/genética , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
8.
Front Immunol ; 15: 1369087, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617839

RESUMEN

Introduction: The ErbB-2.1(TOB1) signaling transducer protein is a tumor-suppressive protein that actively suppresses the malignant phenotype of gastric cancer cells. Yet, TOB1 negatively regulates the activation and growth of different immune cells. Understanding the expression and role of TOB1 in the gastric cancer immune environment is crucial to maximize its potential in targeted immunotherapy. Methods: This study employed multiplex immunofluorescence analysis to precisely delineate and quantify the expression of TOB1 in immune cells within gastric cancer tissue microarrays. Univariate and multivariate Cox analyses were performed to assess the influence of clinical-pathological parameters, immune cells, TOB1, and double-positive cells on the prognosis of gastric cancer patients. Subsequent experiments included co-culture assays of si-TOB1-transfected neutrophils with AGS or HGC-27 cells, along with EdU, invasion, migration assays, and bioinformatics analyses, aimed at elucidating the mechanisms through which TOB1 in neutrophils impacts the prognosis of gastric cancer patients. Results: We remarkably revealed that TOB1 exhibits varying expression levels in both the nucleus (nTOB1) and cytoplasm (cTOB1) of diverse immune cell populations, including CD8+ T cells, CD66b+ neutrophils, FOXP3+ Tregs, CD20+ B cells, CD4+ T cells, and CD68+ macrophages within gastric cancer and paracancerous tissues. Significantly, TOB1 was notably concentrated in CD66b+ neutrophils. Survival analysis showed that a higher density of cTOB1/nTOB1+CD66b+ neutrophils was linked to a better prognosis. Subsequent experiments revealed that, following stimulation with the supernatant of tumor tissue culture, the levels of TOB1 protein and mRNA in neutrophils decreased, accompanied by enhanced apoptosis. HL-60 cells were successfully induced to neutrophil-like cells by DMSO. Neutrophils-like cells with attenuated TOB1 gene expression by si-TOB1 demonstrated heightened apoptosis, consequently fostering a malignant phenotype in AGS and HCG-27 cells upon co-cultivation. The subsequent analysis of the datasets from TCGA and TIMER2 revealed that patients with high levels of TOB1 combined neutrophils showed better immunotherapy response. Discussion: This study significantly advances our comprehension of TOB1's role within the immune microenvironment of gastric cancer, offering promising therapeutic targets for immunotherapy in this context.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neutrófilos , Linfocitos T CD8-positivos , Inmunoterapia , Microambiente Tumoral , Proteínas Supresoras de Tumor , Péptidos y Proteínas de Señalización Intracelular/genética
9.
J Biol Chem ; 287(52): 43417-23, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23135279

RESUMEN

Toll-like receptors (TLRs) are key molecular sensors used by the mammalian innate immune system to detect microorganisms. Although TLR functions in colonic immune homeostasis and tolerance to commensal bacteria have been intensively researched, the precise roles of different TLRs in response to pathogen infection in the gut remain elusive. Peyer patches are the major entrance of Salmonella infection and antigen transportation in intestine. Here, we report that, in contrast to TLR5 as a "carrier of Salmonella," TLR11 works as a "blocker of Salmonella" to prevent highly invasive Salmonella from penetrating into the murine Peyer patches and spreading systemically. TLR11 plays an important role in mediating TNF-α induction and systemic inflammation in response to Salmonella infection. Remarkably, in mice lacking TLR11, apparent hemorrhages at Peyer patches are induced by highly invasive Salmonella, a phenotype resembling human Salmonella infection. Therefore, our results indicate a potentially important role for TLR11 in preventing murine intestinal infection and modulating antigen transportation in the gut and imply an important role for various TLRs in cooperation with tight control of pathogens penetrating into Peyer patches. The TLR11 knock-out mouse can serve as a good animal model to study Salmonella infection.


Asunto(s)
Traslocación Bacteriana/inmunología , Mucosa Intestinal/inmunología , Ganglios Linfáticos Agregados/inmunología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/fisiología , Receptores Toll-Like/inmunología , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Traslocación Bacteriana/genética , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Células CHO , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/genética , Mucosa Intestinal/microbiología , Ratones , Ratones Noqueados , Ganglios Linfáticos Agregados/microbiología , Ganglios Linfáticos Agregados/patología , Infecciones por Salmonella/genética , Infecciones por Salmonella/patología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Receptores Toll-Like/genética
10.
Int J Cancer ; 133(4): 797-806, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23382041

RESUMEN

Double minutes (DMs) are hallmarks of gene amplification. However, their molecular structure and the mechanisms of formation are largely unknown. To elucidate the structure and underlying molecular mechanism of DMs, we obtained and cloned DMs using microdissection; and degenerated oligonucleotide primed polymerase chain reaction (DOP-PCR) from the ovarian cancer cell line UACC-1598. Two large amplicons, the 284 kb AmpMYCN, originating from locus 2p24.3 and the 391 kb AmpEIF5A2, from locus 3q26.2, were found co-amplified on the same DMs. The two amplicons are joined through a complex 7 kb junction DNA sequence. Analysis of the junction has revealed three de novo created small palindromes surrounding the six breakpoints. Consistent with these observations, we further found that 70% of the 57 reported DM junction sequences have de novo creation of small palindromic sequences surrounding the breakpoints. Together, our findings indicate that de novo-generated small palindromic sequences are characteristic of amplicon boundary junctions on DMs. It is possible that the de novo-generated small palindromic sequences, which may be generated through non-homologous end joining in concert with a novel DNA repair machinery, play a common role in amplicon rejoining and gene amplification.


Asunto(s)
Amplificación de Genes , Secuencia de Bases , Southern Blotting , Línea Celular Tumoral , Cartilla de ADN , Femenino , Humanos , Neoplasias Ováricas/genética , Reacción en Cadena de la Polimerasa/métodos , Homología de Secuencia de Ácido Nucleico
11.
Dis Markers ; 2022: 7925097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465266

RESUMEN

We previously confirmed that transducer of ERBB2, 1 (TOB1) gene, can induce autophagy in gastric cancer cells. Studies have shown the biogenesis of exosomes overlaps with different autophagy processes, which helps to maintain the self-renewal and homeostasis of body cells. This study is aimed at verifying whether overexpressing TOB1 induces autophagy by secreting exosomes in gastric cancer cells and its underlying mechanisms. Differential ultracentrifugation was used to extracted the exosomes from the culture medium of gastric cancer cell line AGS-TOB1 ectopically overexpressing TOB1 (exo-AGS-TOB1, experimental group) and AGS-empty-vector cell line with low expression of endogenous TOB1 (exo-AGS-Vector, control group). Exosomal markers CD9 and TSG101 were determined in both the cell supernatants of exo-AGS-TOB1 and exo-AGS-Vector by Western blot. Under the transmission electron microscope (TEM), the exosomes were round and saucer-like vesicles with double-layer membrane structure, and the vesicles showed different translucency due to different contents. The peak size of exosomes detected by nanoparticle tracking analysis (NTA) was about 100 nm. When the exosomes of exo-AGS-TOB1 and exo-AGS-Vector were cocultured with TOB1 knockdown gastric cancer cell line HGC-27-TOB1-6E12 for 48 hours, the conversion of autophagy-related protein LC3-I to LC3-II in HGC-27-TOB1-6E12 gastric cancer cells cocultured with exo-AGS-TOB1 was significantly higher than that in the control group, and the ratio of LC3-II/LC3-I was statistically different (P < 0.05). More autophagosomes in HGC-27-TOB1-6E12 cells cocultured with exo-AGS-TOB1 for 48 hours were observed under TEM, while fewer autophagosomes were found in the control group. Lastly, miRNAs were differentially expressed by cell supernatant-exosomal whole transcriptome sequencing. Thus, our results provide new insights into TOB1-induced autophagy in gastric cancer.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Gástricas , Autofagia , Exosomas/genética , Exosomas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Transductores , Proteínas Supresoras de Tumor/genética
12.
Front Cell Dev Biol ; 10: 897096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656545

RESUMEN

DNA repair mechanisms have been proven to be essential for cells, and abnormalities in DNA repair could cause various diseases, such as cancer. However, the diversity and complexity of DNA repair mechanisms obscure the functions of DNA repair in cancers. In addition, the relationships between DNA repair, the tumor mutational burden (TMB), and immune infiltration are still ambiguous. In the present study, we evaluated the prognostic values of various types of DNA repair mechanisms and found that double-strand break repair through single-strand annealing (SSA) and nonhomologous end-joining (NHEJ) was the most prognostic DNA repair processes in gastric cancer (GC) patients. Based on the activity of these two approaches and expression profiles, we constructed a HR-LR model, which could accurately divide patients into high-risk and low-risk groups with different probabilities of survival and recurrence. Similarly, we also constructed a cancer-normal model to estimate whether an individual had GC or normal health status. The prognostic value of the HR-LR model and the accuracy of the cancer-normal model were validated in several independent datasets. Notably, low-risk samples, which had higher SSA and NHEJ activities, had more somatic mutations and less immune infiltration. Furthermore, the analysis found that low-risk samples had higher and lower methylation levels in CpG islands (CGIs) and open sea regions respectively, and had higher expression levels of programmed death-ligand 1 (PD-L1) and lower methylation levels in the promoter of the gene encoding PD-L1. Moreover, low-risk samples were characterized primarily by higher levels of CD4+ memory T cells, CD8+ naive T cells, and CD8+ TEM cells than those in high-risk samples. Finally, we proposed a decision tree and nomogram to help predict the clinical outcome of an individual. These results provide an improved understanding of the complexity of DNA repair, the TMB, and immune infiltration in GC, and present an accurate prognostic model for use in GC patients.

13.
Front Genet ; 13: 919063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801081

RESUMEN

Mitochondrial DNA (mtDNA) has the characteristics of maternal inheritance, high mutation rate, high copy number, and no recombination. As the most powerful tool for studying the origin and evolution of modern humans, mtDNA has great significance in the research of population genetics and evolutionary genetics. Here, we provide new insights into the maternal genetic history of the Daur ethnic group by generating complete mitochondrial genomes from a total of 146 Daur individuals in China. We also collected the published complete mitochondrial genome sequences of 5,094 individuals from 56 worldwide populations as reference data to further explore the matrilineal genetic landscape of the Daur ethnic group. First, the haplotype diversity was 0.9943 ± 0.0019 and nucleotide diversity was 0.0428 ± 0.0210. The neutrality tests of the Daur group showed significant negative values and the mismatch distribution curve was obviously distributed in a unimodal pattern. The results showed that the Daur ethnic group has high genetic diversity and may have experienced recent population expansion. In addition, the main haplogroups of the Daur population were haplogroup D (31.51%), M* (20.55%), C (10.28%), F (7.53%), and B (6.85%), all of which were prevalent in northern China. It probably implies the northern Chinese origin of the Daur population. The PCA, F ST, and phylogenetic analysis results indicated that the Daur group formed a cluster with East Asian populations, and had few genetic differences with the populations in northern China. More importantly, we found that disease-related mutation sites of the mitochondrial genome may be related to ethnic groups, which may have important implications for the prevention and occurrence of specific diseases. Overall, this study revealed the complexity and diversity of the matrilineal genetic background of the Daur ethnic group. Meanwhile, it provided meaningful data for the research on the diversity of the human genome.

14.
Front Genet ; 13: 924781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860464

RESUMEN

Intra-tumoral heterogeneity (ITH) is a critical factor leading to aggressive progression and response to immunotherapy in lung adenocarcinoma (LUAD). However, the relationship between ITH and immune cells in the tumor microenvironment (TME) has not been systematically elucidated. In the present study, we evaluated the ITH status of LUAD samples based on the mutational data obtained from The Cancer Genome Atlas database. First, we identified five key immune pathways with a significantly continuous downtrend among normal, low-heterogeneous, and high-heterogeneous samples and further excavated nine key immune cells related to the key immune pathways and tumor heterogeneity. Then, two immune subtypes were defined by a consensus clustering algorithm based on the infiltration of these immune cells. Differences between these two immune subtypes were remarkable, including alterations of tumor mutation burden and DNA copy number variation at the genomic level, various metabolic pathways, and the different clinical outcome, which was also validated in two independent Gene Expression Omnibus datasets. The results revealed that ITH was significantly associated with prognosis and infiltrating immune cells in the TME. Our study provides novel insights in understanding the relationship between ITH and immune cells and contributes to the immunotherapy of LUAD patients.

15.
Gene ; 824: 146380, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35276239

RESUMEN

Gastric cancer is a common malignant tumor of the gastrointestinal tract with a high incidence and mortality rate. Previous results have suggested that the HIC1 gene might be a tumor suppressor candidate in gastric cancer. However, several critical points need to be elucidated: (1) The correlation of HIC1 promoter methylation with its specific expression level in gastric cancer; (2) The molecular characterization of HIC1 promoter methylation; (3) The possible mechanism by which HIC1 performs its inhibitory role in gastric cancer. To address these questions, we retrieved data from TCGA database to analyze HIC1 promoter methylation levels and transcript expression data, and performed targeted region bisulfite sequencing on three stable HIC1 down-regulated cell lines and normal control cell lines, and performed whole transcriptome and metabolite assays in HIC1 knockout cell lines by CRISPR-Cas9 technique. Results demonstrated that HIC1 promoter hypermethylation might be a crucial driving force leading to its down-regulation in HIC1 expression in gastric cancer. This implicated that promoter CG methylation of HIC1 might play a major role in the development of gastric carcinogenesis. Besides, HIC1 may suppress gastric cancer progression by maintaining the normal cellular metabolism, and inhibiting the mTOR signaling pathway activity.


Asunto(s)
Neoplasias Gástricas , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Regiones Promotoras Genéticas , Neoplasias Gástricas/genética
16.
PeerJ ; 10: e12904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186488

RESUMEN

BACKGROUND: We previously identified the tumor suppressor gene TOB1 as related to gastric cancer. The purpose of this study was to explore whether TOB1 induces autophagy through the AKT/mTOR signaling pathway in gastric cancer. METHODS: Western blotting was used to detect the protein levels of TOB1, LC3, AKT, mTOR, phosphorylated (p) AKT, and p-mTOR. A double fluorescent GFP-RFP-LC3 fusion protein was used to trace autophagy by laser confocal microscopy. Autophagosomes were observed by transmission electron microscopy. RESULTS: The conversion of LC3-I to LC3-II and the LC3-II/LC3-I ratio were significantly increased in AGS cells overexpressing TOB1 compared with control cells. Fluorescence imaging showed LC3 puncta at 48 h, and these puncta increased significantly at 72 h after TOB1 transfection compared with control tumor cells. The presence of autophagosomes in AGS cells was observed at 72 h after TOB1 transfection by transmission electron microscopy, and no autophagosomes were found in the control cells. Moreover, the levels of p-AKT and p -mTOR were lower in AGS cells than in control cancer cells. CONCLUSION: Our results provide novel insight that TOB1 might suppress gastric cancer by inducing autophagy, possibly through decreasing phosphorylation and the subsequent activation of the AKT/mTOR signaling pathway.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias Gástricas , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Neoplasias Gástricas/genética , Apoptosis , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Autofagia/genética , Proteínas Supresoras de Tumor/genética , Péptidos y Proteínas de Señalización Intracelular/genética
17.
Pathol Res Pract ; 230: 153755, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34990869

RESUMEN

We previously found allelic deletions on chromosomes 17 in primary gastric cancers (GC) using microsatellite markers for loss of heterozygosity (LOH). OVCA1 lies in one of these regions (17q21.33). The association between single nucleotide polymorphism (SNP) of OVCA1 gene and risk of gastric cancer is not yet clear. In this study, the peripheral blood of 505 gastric cancer patients and 544 healthy controls were genotyped for six SNPs (rs2273981, rs1131600, rs3752963, rs3803806, rs2236375, and rs1051322) of OVCA1, to evaluate the association of these SNPs with the risk of gastric cancer in the Han population in northeast China. The effect of rs2273981 located in the promoter region of OVCA1 on the transcription activity was determined using dual luciferase reporter assay. We found that the association between the AA + AG genotype of rs2273981 and the risk of gastric cancer was significant in smokers (AA + AG vs. GG, OR = 2.47, 95% CI = 1.04 - 5.87, P < 0.05). Stratified analysis of the clinicopathological parameters revealed that rs1131600 AG + GG genotype were significantly associated with increased gastric tumor volume (AG + GG vs. AA, OR = 1.81, 95% CI = 1.00 - 3.29, P < 0.05). The rs2236375 CT + TT genotype was also significantly associated with increased gastric tumor volume (CT + TT vs. CC, OR = 2.65, 95% CI = 1.38 - 5.10, P < 0.05). Additionally, by interacting with the transcription factor AP2A, the GG genotype the rs2273981 increased the transcription activity of OVCA1 compared with AA genotype, thus involved in gastric cancer development.


Asunto(s)
Biomarcadores de Tumor/genética , Antígenos de Histocompatibilidad Menor/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Neoplasias Gástricas/genética , Proteínas Supresoras de Tumor/genética , Subunidades del Complejo de Proteínas Adaptadoras/genética , Subunidades del Complejo de Proteínas Adaptadoras/metabolismo , Anciano , Pueblo Asiatico/genética , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , China/epidemiología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/metabolismo , Fenotipo , Medición de Riesgo , Factores de Riesgo , Neoplasias Gástricas/etnología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Carga Tumoral , Proteínas Supresoras de Tumor/metabolismo
18.
Front Genet ; 13: 944492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957688

RESUMEN

Genetic variation has been shown to affect tumor growth and progression, and the temperature at different latitudes may promote the evolution of genetic variation. Geographical data with latitudinal information is of importance to understand the interplay between genetic variants and environmental influence, such as the temperature, in gastric cancer (GC). In this study, we classified the GC samples from The Cancer Genome Atlas database into two groups based on the latitudinal information of patients and found that GC samples with low-latitude had better clinical outcomes. Further analyses revealed significant differences in other clinical factors such as disease stage and grade between high and low latitudes GC samples. Then, we analyzed the genomic and transcriptomic differences between the two groups. Furthermore, we evaluated the activity score of metabolic pathways and infiltrating immune cells in GC samples with different latitudes using the single-sample gene set enrichment analysis algorithm. These results showed that GC samples at low-latitude had lower tumor mutation burden and subclones as well as higher DNA repair activities. Meanwhile, we found that most immune cells were associated with the prognosis of low-latitude GC patients. At last, we constructed and validated an immune-related prognostic model to evaluate the prognosis of GC samples at different latitudes. This study has provided a further understanding of the geographical contribution to GC at the multiomic level and may benefit the individualized treatment of GC patients at different latitudes.

19.
Breast Cancer Res Treat ; 126(3): 763-70, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20882404

RESUMEN

We conducted a meta-analysis to assess the association between tumor necrosis factor-alpha (TNF-alpha) gene TNFA -308 (G>A), TNFA -238 (G>A), TNFA -857 (C>T), TNFA -863 (C>A), TNFA -1031 (T>C), TNFA -1210 (A>T) polymorphisms and breast cancer(BC) susceptibility. We also performed subgroup analyses based on ethnicity (Caucasian, Asian, and African). An extensive search was performed to identify all case-control studies investigating such association. Thirteen eligible studies, including 10,236 BC patients and 13,143 controls, were identified. No significant association was observed in all genotypes in worldwide populations, but stratification by ethnicity indicated that the TNFA -308 A allele was associated with a decreased risk of BC compared with the G allele in Caucasian individuals (OR = 0.927, 95%CI = 0.879-0.978). Similar results were obtained when the A/A +A/G genotype was compared with the G/G genotype. In addition, meta-analysis results indicated that the A/A genotype of TNFA -308 was a risk factor for BC in African (A/A vs. G/G OR = 4.085 95%CI = 1.460-11.425; A/A vs. G/A OR = 4.861 95%CI = 1.746-13.527; A/A vs. G/A + G/G OR = 4.246 95%CI = 1.551-11.625), but not in Caucasian or Asian individuals. In conclusion, the results of this meta-analysis indicate that the TNFA -308 A allele may be an important protective factor for BC in European individuals, but it is not likely to confer susceptibility to BC in worldwide populations. In addition, the AA genotype of TNFA -308 may be a risk factor for BC in African individuals. Besides, other polymorphisms were not associated with BC susceptibility.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Polimorfismo Genético , Factor de Necrosis Tumoral alfa/genética , Alelos , Estudios de Casos y Controles , Etnicidad , Femenino , Genotipo , Humanos , Modelos Genéticos , Oportunidad Relativa , Riesgo , Factores de Riesgo
20.
Pharmgenomics Pers Med ; 14: 1537-1547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34876832

RESUMEN

INTRODUCTION: Genetic variability in genes encoding drug-metabolizing enzymes may contribute to the heterogeneity of drug responses in different populations. Extensive research in pharmacogenomics in major populations around the world provides us with a great deal of information about drug-related genetic polymorphisms. OBJECTIVE: The purpose of this study was to detect the genetic variation of drug-metabolism-related genes in the five ethnic minorities Daur, Hezhen, Ewenki, Mongolian and Manchu in China, and to analyze the distribution differences among ethnic groups. METHODS: We genotyped 32 SNPs of drug metabolism genes in 882 healthy Chinese volunteers from five ethnic groups. The genotype frequency and allele frequency of the five ethnic groups were calculated, and the different variants among the five ethnic groups were compared by chi-square test. Genetic parameters were analyzed using Popgene software. The genetic structure of five ethnic minorities was analyzed by principal component analysis, and compared with 26 populations. RESULTS: We found that SNPs of genes related to drug metabolism existed diversity in different populations. Among them, rs8192766 and rs9419082 in CYP2E1 showed statistical differences between Daur and Manchu, and NAT2 rs1801280 showed statistical differences between Hezhen and Mongolian. In addition, the five populations we studied had the smallest differences with EAS populations. There was haplotype diversity in CHST3, VKORC1, CYP1A2 and CYP2E1 genes in the five ethnic minorities, and these haplotype polymorphisms were related to the use of corresponding drug doses. Cluster analysis shows that the five ethnic minorities in Heilongjiang Province are clustered together with the EAS populations. CONCLUSION: These results suggest that understanding the diversity of drug-related genetic markers is critical for individualized drug gene therapy programs in ethnic minorities in China as well as in populations highly mixed with these ethnic groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA