Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(25): e2311945, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196051

RESUMEN

Hybrid ion capacitors (HIC) are receiving a lot of attention due to their potential to achieve high energy and power densities, but they remain insufficient. It is imperative to explore outstanding and environmentally benign electrode materials to achieve high-performing HIC systems. Here, a unique boron carbon nitride (BCN)-based HIC system that comprises a microporous BCN structure and Fe1-xS nanoparticle incorporated BCN nanosheets (BNF) as cathode and anode, respectively is reported. The BNF is prepared through a facile one-pot calcination process using dithiooxamide (DTO), boric acid, and iron source. In situ, crystal growth of Fe1-xS facilitates the formation of BCN structure through the creation of holes/defects in the polymeric structure. The first principle density functional (DFT) theory simulations demonstrate the structural and electronic properties of the hybrid of BCN and Fe1-xS as compelling anode materials for HIC applications. The DFT calculations reveal that both BCN and BNF structures have excellent metallic characters with Li+ storage capacities of 128.4 and 1021.38 mAh g-1 respectively. These findings are confirmed experimentally where the BCN-based HIC system delivers exceptional energy and power densities of 267.5 Wh kg-1/749.5 W kg-1 toward Li+ storage, which outweighs previous HIC performances and demonstrates favorable performance for Li+ and Na+ storages.

2.
Angew Chem Int Ed Engl ; 63(7): e202317267, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38158770

RESUMEN

The electrosynthesis of hydrogen peroxide (H2 O2 ) via two-electron (2e- ) oxygen (O2 ) reduction reaction (ORR) has great potential to replace the traditional energy-intensive anthraquinone process, but the design of low-cost and highly active and selective catalysts is greatly challenging for the long-term H2 O2 production under industrial relevant current density, especially under neutral electrolytes. To address this issue, this work constructed a carboxylated hexagonal boron nitride/graphene (h-BN/G) heterojunction on the commercial activated carbon through the coupling of B, N co-doping with surface oxygen groups functionalization. The champion catalyst exhibited a high 2e- ORR selectivity (>95 %), production rate (up to 13.4 mol g-1 h-1 ), and Faradaic efficiency (FE, >95 %). The long-term H2 O2 production under the high current density of 100 mA cm-2 caused the cumulative concentration as high as 2.1 wt %. The combination of in situ Raman spectra and theoretical calculation indicated that the carboxylated h-BN/G configuration promotes the adsorption of O2 and the stabilization of the key intermediates, allowing a low energy barrier for the rate-determining step of HOOH* release from the active site and thus improving the 2e- ORR performance. The fast dye degradation by using this electrochemical synthesized H2 O2 further illustrated the promising practical application.

3.
Small ; : e2304587, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072818

RESUMEN

Sodium-ion batteries (SIBs) have received tremendous attention owing to their low cost, high working voltages, and energy density. However, the design and development of highly efficient SIBs represent a great challenge. Here, a unique and reliable approach is reported to prepare carbon nitride (CN) hybridized with nickel iron sulfide (NFCN) using simple reaction between Ni-Fe layered double hydroxide and dithiooxamide. The characterization results demonstrate that the hybridization with optimal amount of CN induces local distortion in the crystal structure of the hybrid, which would benefit SIB performance. Systematic electrochemical studies with a half-cell configuration show that the present hybrid structure exhibits a promising reversible specific capacity of 348 mAh g-1 at 0.1 A g-1 after 100 cycles with good rate capability. Simulation result reveals that the iron atoms in nickel iron sulfide act as a primary active site to accommodate Na+ ions. At last, with a full cell configuration using NFCN and Na3 V2 (PO4 )2 O2 F as the anode and cathode, respectively, the specific capacity appears to be ≈95 mAh g-1 after 50 cycles at 0.1 A g-1 condition. This excellent performance of these hybrids can be attributed to the synergistic effect of the incorporated CN species and the high conductivity of nickel-iron sulfide.

4.
Small ; : e2304369, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715070

RESUMEN

High-magnetization materials play crucial roles in various applications. However, the past few decades have witnessed a stagnation in the discovery of new materials with high magnetization. In this work, Ni/NiO nanocomposites are fabricated by depositing Ni and NiO thin layers alternately, followed by annealing at specific temperatures. Both the as-deposited samples and those annealed at 373 K exhibit low magnetization. However, the samples annealed at 473 K exhibit a significantly enhanced saturation magnetization exceeding 607 emu cm-3 at room temperature, surpassing that of pure Ni (480 emu cm-3 ). Material characterizations indicate that the composite comprises NiO nanoclusters of size 1-2 nm embedded in the Ni matrix. This nanoclustered NiO is primarily responsible for the high magnetization, as confirmed by density functional theory calculations. The calculations also indicate that the NiO clusters are ferromagnetically coupled with Ni, resulting in enhanced magnetization. This work demonstrates a new route toward developing artificial high-magnetization materials using the high magnetic moments of nanoclustered antiferromagnetic materials.

5.
Arterioscler Thromb Vasc Biol ; 40(11): 2649-2664, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32938216

RESUMEN

OBJECTIVE: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a critical role in atherosclerosis, vascular restenosis, and hypertension. Choline exerts cardioprotective effects; however, little is known about its effects on VSMC phenotypic switching and vascular remodeling. Here, we investigated whether choline modulates VSMC phenotypic changes and explored the underlying mechanisms. Approach and Results: In cultured VSMCs, choline promoted Nrf2 (nuclear factor erythroid 2-related factor 2) nuclear translocation, inducing the expression of HO-1 (heme oxygenase-1) and NQO-1 (NAD[P]H quinone oxidoreductase-1). Consequently, choline ameliorated Ang II (angiotensin II)-induced increases in NOX (NAD[P]H oxidase) expression and the mitochondrial reactive oxygen species level, thereby attenuating Ang II-induced VSMC phenotypic switching, proliferation, and migration, presumably via M3AChRs (type 3 muscarinic acetylcholine receptors). Downregulation of M3AChR or Nrf2 diminished choline-mediated upregulation of Nrf2, HO-1, and NQO-1 expression, as well as inhibition of VSMC phenotypic transformation, suggesting that M3AChR and Nrf2 activation are responsible for the protective effects of choline. Moreover, activation of the Nrf2 pathway by sulforaphane suppressed Ang II-induced VSMC phenotypic switching and proliferation, indicating that Nrf2 is a key regulator of VSMC phenotypic switching and vascular homeostasis. In a rat model of abdominal aortic constriction in vivo, choline attenuated VSMC phenotypic transformation and vascular remodeling in a manner related to activation of the Nrf2 pathway. CONCLUSIONS: These results reveal that choline impedes VSMC phenotypic switching, proliferation, migration, and vascular remodeling by activating M3AChR and Nrf2-antioxidant signaling and suggest a novel role for Nrf2 in VSMC phenotypic modulation.


Asunto(s)
Plasticidad de la Célula/efectos de los fármacos , Colina/farmacología , Agonistas Muscarínicos/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Muscarínico M3/agonistas , Remodelación Vascular/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Factor 2 Relacionado con NF-E2/genética , Fenotipo , Ratas Sprague-Dawley , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transducción de Señal
6.
Nano Lett ; 20(2): 1101-1109, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31944125

RESUMEN

Oxide heterostructures have attracted a lot of interest because of their rich exotic phenomena and potential applications. Recently, a greatly enhanced tunneling electroresistance (TER) of ferroelectric tunnel junctions (FTJs) has been realized in such heterostructures. However, our understanding on the electronic structure of resistance response with polarization reversal and the origin of huge TER is still lacking. Here, we report on electronic structures, particularly at the interface and surface, and the control of the spontaneous polarization of BaTiO3 films by changing the termination of a SrTiO3 substrate. Interestingly, unusual electron and hole midgap states are concurrently formed and accompanied by orbital reconstructions, which determine the ferroelectric polarization orientation in the BaTiO3/SrTiO3. Such unusual midgap states, which yield a strong electronic screening effect, reduce the ferroelectric barrier width and height, and pin the ferroelectric polarization, lead to a dramatic enhancement of the TER effect. The midgap states are also observed in BaTiO3 films on electron-doped Nb/SrTiO3 revealing its universality. Our result provides new insight into the origin of the huge TER effect and opens a new route for designing ferroelectric tunnel junction-based devices with huge TER through interface engineering.

7.
Nano Lett ; 20(4): 2493-2499, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134679

RESUMEN

Using interlayer interaction to control functional heterostructures with atomic-scale designs has become one of the most effective interface-engineering strategies nowadays. Here, we demonstrate the effect of a crystalline LaFeO3 buffer layer on amorphous and crystalline LaAlO3/SrTiO3 heterostructures. The LaFeO3 buffer layer acts as an energetically favored electron acceptor in both LaAlO3/SrTiO3 systems, resulting in modulation of interfacial carrier density and hence metal-to-insulator transition. For amorphous and crystalline LaAlO3/SrTiO3 heterostructures, the metal-to-insulator transition is found when the LaFeO3 layer thickness crosses 3 and 6 unit cells, respectively. Such different critical LaFeO3 thicknesses are explained in terms of distinct characteristic lengths of the redox-reaction-mediated and polar-catastrophe-dominated charge transfer, controlled by the interfacial atomic contact and Thomas-Fermi screening effect, respectively. Our results not only shed light on the complex interlayer charge transfer across oxide heterostructures but also provide a new route to precisely tailor the charge-transfer process at a functional interface.

8.
Angew Chem Int Ed Engl ; 60(39): 21242-21249, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34378296

RESUMEN

Mesoporous carbon nitrides with C3 N5 and C3 N6 stoichiometries created a new momentum in the field of organic metal-free semiconductors owing to their unique band structures and high basicity. Here, we report on the preparation of a novel graphitic microporous carbon nitride with a tetrazine based chemical structure and the composition of C3 N5.4 using ultra-stable Y zeolite as the template and aminoguanidine hydrochloride, a high nitrogen-containing molecule, as the CN precursor. Spectroscopic characterization and density functional theory calculations reveal that the prepared material exhibits a new molecular structure, which comprises two tetrazines and one triazine rings in the unit cell and is thermodynamically stable. The resultant carbon nitride shows an outstanding surface area of 130.4 m2 g-1 and demonstrates excellent CO2 adsorption per unit surface area of 47.54 µmol m-2 , which is due to the existence of abundant free NH2 groups, basic sites and microporosity. The material also exhibits highly selective sensing over water molecules (151.1 mmol g-1 ) and aliphatic hydrocarbons due to its unique microporous structure with a high amount of hydrophilic nitrogen moieties and recognizing ability towards small molecules.

9.
J Mol Cell Cardiol ; 128: 26-37, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30660679

RESUMEN

DNA methylation is a well-defined epigenetic modification that regulates gene transcription. However, the role of DNA methylation in the cardiac hypertrophy seen in hypertension is unclear. This study was performed to investigate genome-wide DNA methylation profiles in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKY), and the cardioprotective effect of choline. Eight-week-old male SHRs received intraperitoneal injections of choline (8 mg/kg/day) for 8 weeks. SHRs showed aberrant methylation distribution on chromosomes and genome regions, with decreased methylation levels at CHG and CHH sites. A total of 91,559 differentially methylated regions (DMRs) were detected between SHRs and WKY rats, of which 28,197 were demethylated and 63,362 were methylated. Choline treatment partly restored the DMRs in SHRs, which were related to 131 genes. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis of DMRs suggested that choline partly reversed the dysfunctions of biological processes, cellular components and molecular functions in SHRs. Moreover, the inhibition of 2-oxoglutarate accumulation by choline, thereby inhibiting excessive activation of ten-eleven translocation methylcytosine dioxygenase enzymes, may correlate with the beneficial effects of choline on methylation levels, cardiac hypertrophy and cardiac function of SHRs, as indicated by decreased heart rate and blood pressure, and increased ejection fraction and fractional shortening. This study provides the first genome-wide DNA methylation profile of the hypertrophic myocardium of SHRs and suggests a novel role for this epigenetic modification in hypertension. Choline treatment may represent a promising approach for modification of DNA methylation and optimization of the epigenetic profile for antihypertensive therapy.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Colina/farmacología , Metilación de ADN/genética , Hipertensión/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/genética , Cardiomegalia/patología , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Genoma/efectos de los fármacos , Humanos , Hipertensión/genética , Hipertensión/patología , Ácidos Cetoglutáricos/metabolismo , Ratas , Ratas Endogámicas SHR , Transducción de Señal/efectos de los fármacos , Secuenciación Completa del Genoma
10.
Am J Physiol Endocrinol Metab ; 317(2): E312-E326, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31211620

RESUMEN

Diabetic patients are more susceptible to myocardial ischemia damage than nondiabetic patients, with worse clinical outcomes and greater mortality. The mechanism may be related to glucose metabolism, mitochondrial homeostasis, and oxidative stress. Pyridostigmine may improve vagal activity to protect cardiac function in cardiovascular diseases. Researchers have not determined whether pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. In the present study, autonomic imbalance, myocardial damage, mitochondrial dysfunction, and oxidative stress were exacerbated in isoproterenol-stimulated diabetic mice, revealing the myocardial vulnerability of diabetic mice to injury compared with mice with diabetes or exposed to isoproterenol alone. Compared with normal mice, the expression of glucose transporters (GLUT)1/4 phosphofructokinase (PFK) FB3, and pyruvate kinase isoform (PKM) was decreased in diabetic mice, but increased in isoproterenol-stimulated normal mice. Following exposure to isoproterenol, the expression of (GLUT)1/4 phosphofructokinase (PFK) FB3, and PKM decreased in diabetic mice compared with normal mice. The downregulation of SIRT3/AMPK and IRS-1/Akt in isoproterenol-stimulated diabetic mice was exacerbated compared with that in diabetic mice or isoproterenol-stimulated normal mice. Pyridostigmine improved vagus activity, increased GLUT1/4, PFKFB3, and PKM expression, and ameliorated mitochondrial dysfunction and oxidative stress to reduce myocardial damage in isoproterenol-stimulated diabetic mice. Based on these results, it was found that pyridostigmine may reduce myocardial vulnerability to injury via the SIRT3/AMPK and IRS-1/Akt pathways in diabetic mice with isoproterenol-induced myocardial damage. This study may provide a potential therapeutic target for myocardial damage in diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas/prevención & control , Glucosa/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Isquemia Miocárdica/prevención & control , Bromuro de Piridostigmina/farmacología , Animales , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/fisiología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Bromuro de Piridostigmina/uso terapéutico
11.
Sheng Li Xue Bao ; 71(2): 216-224, 2019 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-31008481

RESUMEN

Obesity is an important risk factor for cardiovascular diseases, which can lead to a variety of cardiovascular diseases including myocardial remodeling. Obesity may induce myocardial dysfunction by affecting hemodynamics, inducing autonomic imbalance, adipose tissue dysfunction, and mitochondrial dyshomeostasis. The key necessary biochemical functions for metabolic homeostasis are performed in mitochondria, and mitochondrial homeostasis is considered as one of the key determinants for cell viability. Mitochondrial homeostasis is regulated by dynamic regulation of mitochondrial fission and fusion, as well as mitochondrial cristae remodeling, biogenesis, autophagy, and oxidative stress. The mitochondrial fission-fusion and morphological changes of mitochondrial cristae maintain the integrity of the mitochondrial structure. The mitochondria maintain a "healthy" state by balancing biogenesis and autophagy, while reactive oxygen species can act as signaling molecules to regulate intracellular signaling. The excessive accumulation of lipids and lipid metabolism disorder in obesity leads to mitochondrial dyshomeostasis, which activate the apoptotic cascade and lead to myocardial remodeling. In this review, we provide an overview of the recent research progress on obesity-induced myocardial remodeling and its possible mechanism of mitochondrial dyshomeostasis.


Asunto(s)
Mitocondrias/patología , Dinámicas Mitocondriales , Miocardio/patología , Obesidad/fisiopatología , Humanos , Especies Reactivas de Oxígeno
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1037-1050, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29309922

RESUMEN

Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue.


Asunto(s)
Tejido Adiposo/metabolismo , Cardiomiopatías/prevención & control , Grasas de la Dieta/efectos adversos , Bromuro de Piridostigmina/farmacología , Nervio Vago/fisiopatología , Tejido Adiposo/patología , Tejido Adiposo/fisiopatología , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Grasas de la Dieta/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Proteínas Musculares/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Nervio Vago/metabolismo , Nervio Vago/patología
13.
J Mol Cell Cardiol ; 107: 1-12, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28395930

RESUMEN

The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca2+. Protein-protein interactions were assessed by immunoprecipitation. Ca2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca2+ and the release of intracellular Ca2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca2+]cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new inhibitor for suppressing [Ca2+]cyt overload.


Asunto(s)
Inflamación/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Intercambiador de Sodio-Calcio/genética , Canales Catiónicos TRPC/genética , Factor de Necrosis Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Apoptosis/genética , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Homeostasis/genética , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Receptores de Inositol 1,4,5-Trifosfato/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , ARN Interferente Pequeño/genética , Intercambiador de Sodio-Calcio/química , Canales Catiónicos TRPC/química
14.
J Cell Mol Med ; 21(1): 58-71, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491814

RESUMEN

Mitochondrial dynamics-fission and fusion-are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)-induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin-related peptide1 (Drp1) and mitochondrial fission protein1 (Fis-1)) and decreased the expression of fusion proteins (optic atrophy-1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis-1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP-activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+ /calmodulin-dependent protein kinase kinase ß (CaMKKß) during myocardial ischaemia. Treatment with subtype-3 of muscarinic acetylcholine receptor (M3 R) antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3 R/CaMKKß/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3 R/CaMKKß/AMPK pathway, to attenuate ISO-induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Isoproterenol/farmacología , Dinámicas Mitocondriales/fisiología , Isquemia Miocárdica/inducido químicamente , Isquemia Miocárdica/metabolismo , Receptor Muscarínico M3/metabolismo , Animales , Apoptosis/fisiología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/inducido químicamente , Daño por Reperfusión Miocárdica/metabolismo , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Estimulación del Nervio Vago/métodos
15.
J Cell Mol Med ; 21(9): 2106-2116, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28296184

RESUMEN

Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload-induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and ß-myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4 pathway and suppression of the interaction of Orai1/STIM1.


Asunto(s)
Calcineurina/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Presión , Bromuro de Piridostigmina/administración & dosificación , Bromuro de Piridostigmina/uso terapéutico , Transducción de Señal , Animales , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/fisiopatología , Factor de Transcripción GATA4/metabolismo , Pruebas de Función Cardíaca , Hemodinámica/efectos de los fármacos , Masculino , Factores de Transcripción NFATC/metabolismo , Proteína ORAI1/metabolismo , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Molécula de Interacción Estromal 1/metabolismo , Factores de Tiempo , Nervio Vago/efectos de los fármacos , Nervio Vago/patología
16.
Clin Exp Pharmacol Physiol ; 44(12): 1192-1200, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28732106

RESUMEN

It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor ß1 (TGF-ß1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF-ß1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF-ß1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases.


Asunto(s)
Benzamidas/uso terapéutico , Compuestos Bicíclicos con Puentes/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Ventricular/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Benzamidas/administración & dosificación , Compuestos Bicíclicos con Puentes/administración & dosificación , Cardiomegalia/metabolismo , Cardiomegalia/patología , Isoproterenol/farmacología , Masculino , Ratones Endogámicos BALB C , Miocardio/metabolismo , Miocardio/patología , Agonistas Nicotínicos/administración & dosificación , Transducción de Señal
17.
Sheng Li Xue Bao ; 69(5): 579-586, 2017 Oct 25.
Artículo en Zh | MEDLINE | ID: mdl-29063106

RESUMEN

Ischemic heart disease (IHD) is the life-threatening cardiovascular disease. Mitochondria have emerged as key participants and regulators of cellular energy demands and signal transduction. Mitochondrial quality is controlled by a number of coordinated mechanisms including mitochondrial fission, fusion and mitophagy, which plays an important role in maintaining healthy mitochondria and cardiac function. Recently, dysfunction of each process in mitochondrial quality control has been observed in the ischemic hearts. This review describes the mechanism of mitochondrial dynamics and mitophagy as well as its performance linked to myocardial ischemia. Moreover, in combination with our study, we will discuss the effect of vagal nerve on mitochondria in cardio-protection.


Asunto(s)
Mitocondrias/fisiología , Isquemia Miocárdica/fisiopatología , Nervio Vago/fisiología , Animales , Dinámicas Mitocondriales , Mitofagia , Transducción de Señal
18.
J Cell Physiol ; 231(5): 1171-81, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26465230

RESUMEN

Acetylcholine (ACh) protected against cardiac injury via promoting autophagy and mitochondrial biogenesis, however, the involvement of mitophagy in ACh-elicited cardioprotection remains unknown. In the present study, H9c2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) and ACh treatment during reoxygenation. Mitophagy markers PTEN-induced kinase 1 (PINK1) and Parkin translocation were examined using western blot and confocal fluorescence microscopy. Mitochondrial membrane potential and reactive oxygen species (ROS) were detected with fluorescence staining. We found that H/R-treated cells exhibited reduced levels of PINK1 and Parkin in mitochondria, accompanied with decreased autophagy flux (reduced LC3-II/LC3-I and increased p62). Conversely, ACh increased PINK1 and Parkin translocation to mitochondria and enhanced autophagy proteins. Confocal imaging of Parkin and MitoTracker Green-labeled mitochondria further confirmed ACh-induced mitochondrial translocation of Parkin, which was reversed by M2 receptor antagonist methoctramine and M2 receptor siRNA, suggesting ACh could induce mitophagy by M2 receptor after H/R. Mitophagy inhibitor 3-methaladenine abolished ACh-induced mitoprotection, manifesting as aggravated mitochondrial morphology disruption, ATP and membrane potential depletion, increased ROS overproduction, and apoptosis. Furthermore, PINK1/Parkin siRNA attenuated the protective effects of ACh against ATP loss and oxidative stress due to mitochondrial-dependent injury. Taken together, ACh promoted mitochondrial translocation of PINK1/Parkin to stimulate cytoprotective mitophagy via M2 receptor, which may provide beneficial targets in the preservation of cardiac homeostasis against H/R injury.


Asunto(s)
Acetilcolina/farmacología , Mitofagia/efectos de los fármacos , Oxígeno/farmacología , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Citoprotección/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Receptor Muscarínico M2/metabolismo
19.
Phys Rev Lett ; 116(19): 197002, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27232036

RESUMEN

We report the first observation of the coexistence of a distinct midgap state and a Mott state in undoped and their evolution in electron and hole-doped ambipolar Y_{0.38}La_{0.62}(Ba_{0.82}La_{0.18})_{2}Cu_{3}O_{y} films using spectroscopic ellipsometry and x-ray absorption spectroscopies at the O K and Cu L_{3,2} edges. Supported by theoretical calculations, the midgap state is shown to originate from antiferromagnetic correlation. Surprisingly, while the magnetic state collapses and its correlation strength weakens with dopings, the Mott state in contrast moves toward a higher energy and its correlation strength increases. Our result provides important clues to the mechanism of electronic correlation strengths and superconductivity in cuprates.

20.
Arterioscler Thromb Vasc Biol ; 35(7): 1623-34, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25977565

RESUMEN

OBJECTIVE: We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine. APPROACH AND RESULTS: Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca(2+) increases and alleviated ER Ca(2+) depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca(2+) overload and cell death. Inhibition of the partner of the Ca(2+) channeling complex (VDAC1 siRNA) or a reduction in ER-mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca(2+) accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER-mitochondria Ca(2+) cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca(2+) overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R. CONCLUSIONS: Our data suggest that ER-mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates both intracellular and mitochondrial Ca(2+) overload and protects endothelial cells from H/R injury, presumably by disrupting the ER-mitochondria interaction.


Asunto(s)
Acetilcolina/farmacología , Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Regulación hacia Abajo , Elafina/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipoxia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA