RESUMEN
Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Coupling of cell ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC activity without cell sorting.
Asunto(s)
Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Transcriptoma/genética , Animales , Línea Celular , Femenino , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/fisiología , Masculino , Ratones , Transducción Genética/métodosRESUMEN
The Hippo/YAP signaling pathway is a crucial regulator of tissue growth, stem cell activity, and tumorigenesis. However, the mechanism by which YAP controls transcription remains to be fully elucidated. Here, we utilize global chromatin occupancy analyses to demonstrate that robust YAP binding is restricted to a relatively small number of distal regulatory elements in the genome. YAP occupancy defines a subset of enhancers and superenhancers with the highest transcriptional outputs. YAP modulates transcription from these elements predominantly by regulating promoter-proximal polymerase II (Pol II) pause release. Mechanistically, YAP interacts and recruits the Mediator complex to enhancers, allowing the recruitment of the CDK9 elongating kinase. Genetic and chemical perturbation experiments demonstrate the requirement for Mediator and CDK9 in YAP-driven phenotypes of overgrowth and tumorigenesis. Our results here uncover the molecular mechanisms employed by YAP to exert its growth and oncogenic functions, and suggest strategies for intervention.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Complejo Mediador/genética , Fosfoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Cromatina/química , Cromatina/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Elementos de Facilitación Genéticos , Flavonoides/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo Mediador/metabolismo , Ratones , Ratones Transgénicos , Fosfoproteínas/metabolismo , Piperidinas/farmacología , Unión Proteica , Transducción de Señal , Transactivadores , Factores de Transcripción , Transcripción Genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAPRESUMEN
Ubiquitin chains are formed as structurally distinct polymers via different linkages, and several chain types including K33-linkage remain uncharacterized. Here, we describe a role for K33-polyubiquitination in protein trafficking. We show that the Cullin 3 (Cul3) substrate adaptor KLHL20 is localized to the trans-Golgi network (TGN) and is important for post-Golgi trafficking by promoting the biogenesis of TGN-derived transport carriers. The Cul3-KLHL20 ubiquitin E3 ligase catalyzes a nondegradable, K33-linked polyubiquitination on coronin 7 (Crn7), which facilitates Crn7 targeting to TGN through a ubiquitin-dependent interaction with Eps15. Blockage of K33-chain formation, Crn7 ubiquitination, or disruption of Crn7-Eps15 interaction impairs TGN-pool F-actin assembly, a process essential for generating transport carriers. Enforced targeting of Crn7 to TGN bypasses the requirement of K33-ubiquitination for TGN-pool F-actin assembly and post-Golgi trafficking. Our study reveals a role of KLHL20-mediated K33-ubiquitination of Crn7 in post-Golgi transport and identifies a cellular recognition mechanism for this ubiquitin chain type.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Microfilamentos/metabolismo , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células COS , Proteínas Portadoras/genética , Línea Celular , Chlorocebus aethiops , Proteínas Cullin/genética , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Proteínas de Microfilamentos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Red trans-Golgi/metabolismoRESUMEN
Death-associated protein kinase (DAPK) was identified as a mediator of interferon (IFN)-induced cell death. How IFN controls DAPK activation remains largely unknown. Here, we identify the BTB-Kelch protein KLHL20 as a negative regulator of DAPK. KLHL20 binds DAPK and Cullin 3 (Cul3) via its Kelch-repeat domain and BTB domain, respectively. The KLHL20-Cul3-ROC1 E3 ligase complex promotes DAPK polyubiquitination, thereby inducing the proteasomal degradation of DAPK. Accordingly, depletion of KLHL20 diminishes DAPK ubiquitination and degradation. The KLHL20-mediated DAPK ubiquitination is suppressed in cells receiving IFN-alpha or IFN-gamma, which induces an enrichment/sequestration of KLHL20 in the PML nuclear bodies, thereby separating KLHL20 from DAPK. Consequently, IFN triggers the stabilization of DAPK. This mechanism of DAPK stabilization is crucial for determining IFN responsiveness of tumor cells and contributes to IFN-induced autophagy. This study identifies KLHL20-Cul3-ROC1 as an E3 ligase for DAPK ubiquitination and reveals a regulatory mechanism of DAPK, through blocking its accessibility to this E3 ligase, in IFN-induced apoptotic and autophagic death. Our findings may be relevant to the problem of IFN resistance in cancer therapy.
Asunto(s)
Proteínas Portadoras/química , Proteínas Cullin/química , Regulación de la Expresión Génica , Interferones/química , Ubiquitina/química , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular , Células HeLa , Humanos , Interferones/metabolismo , Ratones , Modelos Biológicos , Células 3T3 NIH , Neoplasias/terapia , Fenotipo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Tumor suppressors are frequently downregulated in human cancers and understanding of the mechanisms through which tumor cells restrict the expression of tumor suppressors is important for the prognosis and intervention of diseases. The promyelocytic leukemia (PML) protein plays a critical role in multiple tumor suppressive functions, such as growth inhibition, apoptosis, replicative senescence, suppression of oncogenic transformation, and inhibition of migration and angiogenesis. These tumor suppression functions are recapitulated in several mouse models. The expression of PML protein is frequently downregulated in diverse types of human tumors and this downregulation often correlates with tumor progression. Recent evidence has emerged that PML is aberrantly degraded in various types of tumors through ubiquitination-dependent mechanisms. Here, we summarize our current understanding of the PML ubiquitination/degradation pathways in human cancers. We point out that multiple pathways lead to PML ubiquitination and degradation. Furthermore, the PML ubiquitination processes are often dependent on other types of posttranslational modifications, such as phosphorylation, prolylisomerization, and sumoylation. Such feature indicates a highly regulated nature of PML ubiquitination in different cellular conditions and cell contexts, thus providing many avenues of opportunity to intervene PML ubiquitination pathways. We discuss the potential of targeting PML ubiquitination pathways for anti-cancer therapeutic strategies.
Asunto(s)
Apoptosis/genética , Neoplasias , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación/genética , Animales , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Nucleares/genética , Fosforilación , Proteína de la Leucemia Promielocítica , Sumoilación , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Although the Hippo transcriptional coactivator YAP is considered oncogenic in many tissues, its roles in intestinal homeostasis and colorectal cancer (CRC) remain controversial. Here, we demonstrate that the Hippo kinases LATS1/2 and MST1/2, which inhibit YAP activity, are required for maintaining Wnt signaling and canonical stem cell function. Hippo inhibition induces a distinct epithelial cell state marked by low Wnt signaling, a wound-healing response, and transcription factor Klf6 expression. Notably, loss of LATS1/2 or overexpression of YAP is sufficient to reprogram Lgr5+ cancer stem cells to this state and thereby suppress tumor growth in organoids, patient-derived xenografts, and mouse models of primary and metastatic CRC. Finally, we demonstrate that genetic deletion of YAP and its paralog TAZ promotes the growth of these tumors. Collectively, our results establish the role of YAP as a tumor suppressor in the adult colon and implicate Hippo kinases as therapeutic vulnerabilities in colorectal malignancies.
Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Colorrectales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proliferación Celular , Ratones , Fosfoproteínas/metabolismo , Factores de TranscripciónRESUMEN
The Hippo-YAP signaling pathway is a critical regulator of proliferation, apoptosis, and cell fate. The main downstream effector of this pathway, YAP, has been shown to be misregulated in human cancer and has emerged as an attractive target for therapeutics. A significant insufficiency in our understanding of the pathway is the identity of transcriptional targets of YAP that drive its potent growth phenotypes. Here, using liver cancer as a model, we identify NUAK2 as an essential mediator of YAP-driven hepatomegaly and tumorigenesis in vivo. By evaluating several human cancer cell lines we determine that NUAK2 is selectively required for YAP-driven growth. Mechanistically, we found that NUAK2 participates in a feedback loop to maximize YAP activity via promotion of actin polymerization and myosin activity. Additionally, pharmacological inactivation of NUAK2 suppresses YAP-dependent cancer cell proliferation and liver overgrowth. Importantly, our work here identifies a specific, potent, and actionable target for YAP-driven malignancies.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos/farmacología , Benzodiazepinonas/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Retroalimentación Fisiológica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Miosinas/genética , Miosinas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAPRESUMEN
Rab small GTPases are master regulators of membrane trafficking and guide vesicle targeting. Recent publications show that Rab-controlled trafficking pathways are altered during tumorigenesis. However, whether any of the Rabs plays a metastasis suppressor role is least explored. Here we address the metastasis suppressive function of human Rab37 (hRAB37) using secretomics, cell, animal and clinical analyses. We show that tissue inhibitor of metalloproteinase 1 (TIMP1), a secreted glycoprotein that inhibits extracellular matrix turnover, is a novel cargo of hRAB37. hRAB37 regulates the exocytosis of TIMP1 in a nucleotide-dependent manner to inactivate matrix metalloproteinase 9 (MMP9) migration axis in vitro and in vivo. Dysfunction of hRAB37 or TIMP1 abrogates metastasis suppression. Lung cancer patients with metastasis and poor survival show low hRAB37 protein expression coinciding with low TIMP1 in tumours. Our findings identify hRAB37 as a novel metastasis suppressor Rab that functions through the TIMP1-MMP9 pathway and has significant prognostic power.
Asunto(s)
Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Metaloproteinasa 9 de la Matriz/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Proteínas de Unión al GTP rab/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Animales , Células COS , Línea Celular Tumoral , Movimiento Celular , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/patología , Exocitosis/genética , Humanos , Inyecciones Intravenosas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Trasplante de Neoplasias , Transducción de Señal , Análisis de Supervivencia , Cola (estructura animal) , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Tumor hypoxia is associated with disease progression and treatment failure, but the hypoxia signaling mechanism is not fully understood. Here, we show that KLHL20, a Cullin3 (Cul3) substrate adaptor induced by HIF-1, coordinates with the actions of CDK1/2 and Pin1 to mediate hypoxia-induced PML proteasomal degradation. Furthermore, this PML destruction pathway participates in a feedback mechanism to maximize HIF-1α induction, thereby potentiating multiple tumor hypoxia responses, including metabolic reprogramming, epithelial-mesenchymal transition, migration, tumor growth, angiogenesis, and chemoresistance. In human prostate cancer, overexpression of HIF-1α, KLHL20, and Pin1 correlates with PML down-regulation, and hyperactivation of the PML destruction pathway is associated with disease progression. Our study indicates that the KLHL20-mediated PML degradation and HIF-1α autoregulation play key roles in tumor progression.