Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(9): e202317339, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38085966

RESUMEN

CeO2 nanorod based catalysts for the base-free synthesis of azoxy-aromatics via transfer hydrogenation of nitroarenes with ethanol as hydrogen donor have been synthesized and investigated. The oxygen vacancies (Ov ) and base sites are critical for their excellent catalytic properties. The Ov , i.e., undercoordinated Ce cations, serve as the sites to activate ethanol and nitroarenes by lowering the energy barrier to transfer hydrogen from α-Csp3 -H in ethanol to the nitro group coupling it to the redox reactions between Ce3+ and Ce4+ . At the same time, the base sites catalyze the condensation step to selectively produce azoxy-aromatics. The catalytic route opens a much improved way to use non-noble metal oxides without additives for the selective functional group reduction and coupling reactions.

2.
J Am Chem Soc ; 144(51): 23321-23331, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516341

RESUMEN

Catalytic ammoxidation of alcohols into nitriles is an essential reaction in organic synthesis. While highly desirable, conducting the synthesis at room temperature is challenging, using NH3 as the nitrogen source, O2 as the oxidant, and a catalyst without noble metals. Herein, we report robust photocatalysts consisting of Fe(III)-modified titanium dioxide (Fe/TiO2) for ammoxidation reactions at room temperature utilizing oxygen at atmospheric pressure, NH3 as the nitrogen source, and NH4Br as an additive. To the best of our knowledge, this is the first example of catalytic ammoxidation of alcohols over a photocatalyst using such cheap and benign materials. Various (hetero) aromatic nitriles were synthesized at high yields, and aliphatic alcohols could also be transformed into corresponding nitriles at considerable yields. The modification of TiO2 with Fe(III) facilitates the formation of active •O2- radicals and increases the adsorption of NH3 and amino intermediates on the catalyst, accelerating the ammoxidation to yield nitriles. The additive NH4Br impressively improves the catalytic efficiency via the formation of bromine radicals (Br•) from Br-, which works synergistically with •O2- to capture H• from Cα-H, which is present in benzyl alcohol and the intermediate aldimine (RCH═NH), to generate the active carbon-centered radicals. Further, the generation of Br• from the Br- additive consumes the photogenerated holes and OH• radicals to prevent over-oxidation, significantly improving the selectivity toward nitriles. This amalgamation of function and synergy of the Fe(III)-doped TiO2 and NH4Br reveals new opportunities for developing semiconductor-based photocatalytic systems for fine chemical synthesis.

3.
Chem Commun (Camb) ; 59(80): 11923-11931, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37712348

RESUMEN

The aerobic oxidative cleavage of C-C bonds is an attractive and sustainable route for constructing valuable molecules such as esters, nitriles, and amides. Traditionally homogeneous catalytic systems for C-C bond cleavage required harsh conditions, stoichiometric oxidants, and noble metal catalysts to overcome the thermodynamic and kinetic barriers of C-C bonds, imposing environmental concerns of the transformation. Therefore, developing efficient, low-cost, and environmentally benign methods for C-C bond cleavage is of great importance and a cutting-edge area in modern chemistry. This feature article summarizes the sustainable aerobic oxidative C-C bond cleavage method developed by our group in the past 5 years. Fundamental principles in catalyst design, substrate scope, and mechanism for C-C bond cleavage are also discussed.

4.
ChemSusChem ; 15(15): e202200753, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35504842

RESUMEN

N-heteroarenes represents one of the most important chemicals in pharmaceuticals and other bio-active molecules, which can be easily accessed from the oxidation of N-heterocycles over metal catalysts. Herein, the metal-free oxidative dehydrogenation of N-heterocycles into N-heteroarenes was developed using molecular oxygen as the terminal oxidant. The nitrogen-doped carbon materials were facilely prepared via the simple pyrolysis process using biomass (carboxymethyl cellulose sodium) and dicyandiamide as the carbon and nitrogen source, respectively, and they were discovered to be robust for the oxidative dehydrogenation of N-heterocycles into N-heteroarenes under mild conditions (80 °C under 1 bar O2 ) with water as the green solvent. Diverse N-heterocycles including 1,2,3,4-tetrahydroisoquinolines, indolines and 1,2,3,4-tetrahydroquinoxalines were smoothly converted into N-heteroarenes with high to excellent yields (76->99 %). Superoxide radical (⋅O2 - ) and hydroxyl radical (⋅OH) were probed as the reactive oxygen species for the oxidation of N-heterocycles into N-heteroarenes. More importantly, the nitrogen-doped carbon catalyst can be reused with a high stability. The method provides an environmentally friendly and economical route to access important N-hetero-aromatic commodities.


Asunto(s)
Carbono , Nitrógeno , Carbono/química , Catálisis , Metales , Nitrógeno/química , Oxidación-Reducción , Estrés Oxidativo
5.
ChemSusChem ; 7(12): 3496-504, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25138656

RESUMEN

Magnetic γ-Fe2 O3 nanocrystallites encapsulated by hydroxyapatite (HAP), HAP@γ-Fe2 O3 , were prepared followed by cation exchange of Ca(2+) on the external HAP surface with Ru(3+) to give the γ-Fe2 O3 @HAP-Ru catalyst. The structure of the as-prepared catalyst was characterized, and its catalytic activity was studied in the aerobic oxidation of 5-hydroxymethylfurfural (HMF). γ-Fe2 O3 @HAP-Ru showed a high catalytic activity for the aerobic oxidation of HMF into 2,5-diformylfuran (DFF). A high DFF yield of 89.1 % with an HMF conversion of 100% was obtained after 4 h at 90 °C. Importantly, the synthesis of DFF from fructose was realized by two consecutive steps. The dehydration of fructose in the presence of a magnetic acid catalyst (Fe3 O4 @SiO2-SO3 H) produced HMF in a yield of 90.1%. Then the Fe3 O4 @SiO2 SO3 H catalyst was removed from the reaction solution with a permanent magnet, and HMF in the resulting solution was further oxidized to DFF with a yield of 79.1% based on fructose. The synthesis of DFF from fructose by two steps avoids the tedious separation of the intermediate HMF, which saves time and energy.


Asunto(s)
Durapatita/química , Compuestos Férricos/química , Furanos/síntesis química , Compuestos de Rutenio/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA