Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39001013

RESUMEN

Ischemic stroke is a type of brain dysfunction caused by pathological changes in the blood vessels of the brain which leads to brain tissue ischemia and hypoxia and ultimately results in cell necrosis. Without timely and effective treatment in the early time window, ischemic stroke can lead to long-term disability and even death. Therefore, rapid detection is crucial in patients with ischemic stroke. In this study, we developed a deep learning model based on fusion features extracted from electroencephalography (EEG) signals for the fast detection of ischemic stroke. Specifically, we recruited 20 ischemic stroke patients who underwent EEG examination during the acute phase of stroke and collected EEG signals from 19 adults with no history of stroke as a control group. Afterwards, we constructed correlation-weighted Phase Lag Index (cwPLI), a novel feature, to explore the synchronization information and functional connectivity between EEG channels. Moreover, the spatio-temporal information from functional connectivity and the nonlinear information from complexity were fused by combining the cwPLI matrix and Sample Entropy (SaEn) together to further improve the discriminative ability of the model. Finally, the novel MSE-VGG network was employed as a classifier to distinguish ischemic stroke from non-ischemic stroke data. Five-fold cross-validation experiments demonstrated that the proposed model possesses excellent performance, with accuracy, sensitivity, and specificity reaching 90.17%, 89.86%, and 90.44%, respectively. Experiments on time consumption verified that the proposed method is superior to other state-of-the-art examinations. This study contributes to the advancement of the rapid detection of ischemic stroke, shedding light on the untapped potential of EEG and demonstrating the efficacy of deep learning in ischemic stroke identification.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Accidente Cerebrovascular Isquémico , Humanos , Electroencefalografía/métodos , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/diagnóstico , Masculino , Femenino , Anciano , Persona de Mediana Edad , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/diagnóstico , Procesamiento de Señales Asistido por Computador , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/diagnóstico
2.
Bioengineering (Basel) ; 10(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38002365

RESUMEN

Medication recommendation based on electronic health records (EHRs) is a significant research direction in the biomedical field, which aims to provide a reasonable prescription for patients according to their historical and current health conditions. However, the existing recommended methods have many limitations in dealing with the structural and temporal characteristics of EHRs. These methods either only consider the current state while ignoring the historical situation, or fail to adequately assess the structural correlations among various medical events. These factors result in poor recommendation quality. To solve this problem, we propose an augmented graph structural-temporal convolutional network (A-GSTCN). Firstly, an augmented graph attention network is used to model the structural features among medical events of patients' EHRs. Next, the dilated convolution combined with residual connection is applied in the proposed model, which can improve the temporal prediction capability and further reduce the complexity. Moreover, the cache memory module further enhances the model's learning of the history of EHRs. Finally, the A-GSTCN model is compared with the baselines through experiments, and the efficiency of the A-GSTCN model is verified by Jaccard, F1 and PRAUC. Not only that, the proposed model also reduces the training parameters by an order of magnitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA