Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 390(1): 97-108, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17976686

RESUMEN

Volatile organic compounds (VOCs) in the air of Beijing City were measured at the heights of 8, 32, 140 and 280 m on the Beijing 325 m meteorological tower in autumn 2005. Concentrations of fifty-five compounds were determined by quantitative analytical methods. Our study utilized GC/MS analysis of 0.5 l air sample that were cryo-concentrated prior to analysis. The vertical distributions of VOCs were also investigated using 1-butene, isopentane, dichloromethane and toluene as representative compounds of several different categories. It is shown that 1-butene followed by 2-butene, isopentane followed by n-pentane, dichloromethane followed by chloroform and toluene followed by benzene are the most abundant compounds in the categories of alkene, alkane, halocarbon and aromatic hydrocarbon, respectively. The concentrations of TVOCs range from 51.2+/-39.7 ppb to 83.6+/-44.4 ppb on clear days, but from 62.9+/-19.0 ppb to 105.0+/-59.2 ppb on haze days. While alkenes and halocarbons contribute little to TVOCs, alkanes provide the largest percentage, ranging from about 46% to 63% at four different heights, which are followed by aromatic hydrocarbons ranging from about 15% to 27%. The vertical distributions of VOCs are complex. On clear days most distribution profiles show a decreasing trend with increasing height. On haze days, however, they exhibit first a decrease with increasing altitude from 8 m to 140 m and then a significant increase at 280 m. These results are understood by analyzing how the vertical distributions of VOCs are affected jointly by several factors such as meteorological parameters and transport property. In addition, principal components analysis (PCA) and cluster analysis show that VOCs have different origins at different heights.


Asunto(s)
Acetatos/análisis , Contaminantes Atmosféricos/análisis , Hidrocarburos/análisis , Metil n-Butil Cetona/análisis , China , Ciudades , Monitoreo del Ambiente , Temperatura , Volatilización , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA