Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 32: 594-602, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37200861

RESUMEN

Structural fetal diseases, such as congenital diaphragmatic hernia (CDH) can be diagnosed prenatally. Neonates with CDH are healthy in utero as gas exchange is managed by the placenta, but impaired lung function results in critical illness from the time a baby takes its first breath. MicroRNA (miR) 200b and its downstream targets in the TGF-ß pathway are critically involved in lung branching morphogenesis. Here, we characterize the expression of miR200b and the TGF-ß pathway at different gestational times using a rat model of CDH. Fetal rats with CDH are deficient in miR200b at gestational day 18. We demonstrate that novel polymeric nanoparticles loaded with miR200b, delivered in utero via vitelline vein injection to fetal rats with CDH results in changes in the TGF-ß pathway as measured by qRT-PCR; these epigenetic changes improve lung size and lung morphology, and lead to favorable pulmonary vascular remodeling on histology. This is the first demonstration of in utero epigenetic therapy to improve lung growth and development in a pre-clinical model. With refinement, this technique could be applied to fetal cases of CDH or other forms of impaired lung development in a minimally invasive fashion.

2.
J Am Coll Surg ; 234(6): 1010-1019, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35703790

RESUMEN

BACKGROUND: Myelomeningocele (MMC) is a devastating congenital neurologic disorder that can lead to lifelong morbidity and has limited treatment options. This study investigates the use of poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) loaded with fibroblast growth factor (FGF) as a platform for in utero treatment of MMC. STUDY DESIGN: Intra-amniotic injections of PLGA MPs were performed on gestational day 17 (E17) in all-trans retinoic acid-induced MMC rat dams. MPs loaded with fluorescent dye (DiO) were evaluated 3 hours after injection to determine incidence of binding to the MMC defect. Fetuses were then treated with PBS or PLGA particles loaded with DiO, bovine serum albumin, or FGF and evaluated at term (E21). Fetuses with MMC defects were evaluated for gross and histologic evidence of soft tissue coverage. The effect of PLGA-FGF treatment on spinal cord cell death was evaluated using an in situ cell death kit. RESULTS: PLGA-DiO MPs had a binding incidence of 86% and 94% 3 hours after injection at E17 for doses of 0.1 mg and 1.2 mg, respectively. Incidence of soft tissue coverage at term was 19% (4 of 21), 22% (2 of 9), and 83% (5 of 6) for PLGA-DiO, PLGA-BSA, and PLGA-FGF, respectively. At E21, the percentage of spinal cord cells positive for in situ cell death was significantly higher in MMC controls compared with wild-type controls or MMC pups treated with PLGA-FGF. CONCLUSION: PLGA MPs are an innovative minimally invasive platform for induction of soft tissue coverage in the rat model of MMC and may reduce cellular apoptosis.


Asunto(s)
Meningomielocele , Animales , Apoptosis , Glicoles/efectos adversos , Humanos , Meningomielocele/inducido químicamente , Meningomielocele/terapia , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/efectos adversos , Ratas
3.
Transl Pediatr ; 10(5): 1486-1496, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34189107

RESUMEN

The field of in utero gene therapy (IUGT) represents a crossroad of technologic advancements and medical ethical boundaries. Several strategies have been developed for IUGT focusing on either modifying endogenous genes, replacing missing genes, or modifying gene transcription products. The list of candidate diseases such as hemoglobinopathies, cystic fibrosis, lysosomal storage disorders continues to grow with new strategies being developed as our understanding of their respective underlying molecular pathogenesis increases. Treatment in utero has several distinct advantages to postnatal treatment. Biologic and physiologic phenomena enable the delivery of a higher effective dose, generation of immune tolerance, and the prevention of phenotypic onset for genetic diseases. Therapeutic technology for IUGT including CRISPR-Cas9 systems, zinc finger nucleases (ZFN), and peptide nucleic acids (PNAs) has already shown promise in animal models and early postnatal clinical trials. While the ability to detect fetal diagnoses has dramatically improved with developments in ultrasound and next-generation sequencing, treatment options remain experimental, with several translational gaps remaining prior to implementation in the clinical realm. Complicating this issue, the potential diseases targeted by this approach are often debilitating and would otherwise prove fatal if not treated in some manner. The leap from small animals to large animals, and subsequently, to humans will require further vigorous testing of safety and efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA