RESUMEN
Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2â. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.
Asunto(s)
Antioxidantes , Daucus carota , Germinación , Nitratos , Compuestos de Potasio , Plantones , Semillas , Antioxidantes/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Nitratos/metabolismo , Nitratos/farmacología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Daucus carota/crecimiento & desarrollo , Daucus carota/efectos de los fármacos , Daucus carota/fisiología , Compuestos de Potasio/farmacología , Germinación/efectos de los fármacos , CalorRESUMEN
Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.
Asunto(s)
Nanopartículas del Metal , Enfermedades de las Plantas , Plata , Solanum lycopersicum , Solanum lycopersicum/microbiología , Plata/farmacología , Nanopartículas del Metal/química , Enfermedades de las Plantas/microbiología , Clavibacter , Moringa oleifera/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tecnología Química Verde , Hojas de la Planta/microbiologíaRESUMEN
Management of molasses-based wastewater generated in yeast and sugar industries is a major environmental concern due to its high chemical oxygen demand and other recalcitrant substances. Several strategies have been used to reduce the inland discharge of wastewater but the results are not satisfactory due to high operating cost. However, reuse of molasses-based wastewater irrigation in agriculture has been a major interest nowadays to reduce the freshwater consumption. Thus, it is crucial to monitor the impacts of molasses-based waste water irrigation on growth, metabolism, yield and nutritional quality of crops for safer consumer's health. In present study, carrot seeds of a local cultivar (T-29) were germinated on filter paper in Petri dishes under controlled conditions. The germinated seeds were then transplanted into pots and irrigated with three different treatments normal water (T0), diluted molasses-based wastewater (T1), and untreated molasses-based wastewater (T2), in six replicates. Results revealed that carrot irrigated with untreated molasses-based waste water had exhibited significant reductions in growth, yield, physiology, metabolism, and nutritional contents. Additionally, accumulation of Cd and Pb contents in carrot roots irrigated with untreated molasses-based waste water exceed the permissible limits suggested by WHO and their consumption may cause health risks. While, diluted molasses-based waste water irrigation positively enhanced the growth, yield of carrot plants without affecting the nutritional quality. This strategy is cost effective, appeared as most appropriate alternative mean to reduce the freshwater consumption in water deficit regions of the world.
Asunto(s)
Riego Agrícola , Daucus carota , Melaza , Aguas Residuales , Daucus carota/crecimiento & desarrollo , Daucus carota/metabolismo , Aguas Residuales/química , Riego Agrícola/métodos , Valor NutritivoRESUMEN
Drought poses a significant ecological threat that limits the production of crops worldwide. The objective of this study to examine the impact of soil applied biochar (BC) and peatmoss (PM) on the morpho-biochemical and quality traits of tobacco plants under drought conditions. In the present experiment work, a pot trial was conducted with two levels of drought severity (~ well-watered 75 ± 5% field capacity) and severe drought stress (~ 35 ± 5% field capacity), two levels of peatmoss (PM) @ 5% [PM+ (with peatmoss) and PM- (without peatmoss)] and three levels of rice straw biochar (BC0 = no biochar; BC1 = 150 mg kg- 1; and BC2 = 300 mg kg- 1 of soil) in tobacco plants. The results indicate that drought conditions significantly impacted the performance of tobacco plants. However, the combined approach of BC and PM significantly improved the growth, biomass, and total chlorophyll content (27.94%) and carotenoids (32.00%) of tobacco. This study further revealed that the drought conditions decreased the production of lipid peroxidation and proline accumulation. But the synergistic approach of BC and PM application increased soluble sugars (17.63 and 12.20%), soluble protein (31.16 and 15.88%), decreased the proline accumulation (13.92 and 9.03%), and MDA content (16.40 and 8.62%) under control and drought stressed conditions, respectively. Furthermore, the combined approach of BC and PM also improved the leaf potassium content (19.02%) by limiting the chloride ions (33.33%) under drought stressed conditions. Altogether, the balanced application of PM and BC has significant potential as an effective approach and sustainable method to increase the tolerance of tobacco plants subjected to drought conditions. This research uniquely highlights the combined potential of PM and BC as an eco-friendly strategy to enhance plant resilience under drought conditions, offering new insights into sustainable agricultural practices.
Asunto(s)
Carbón Orgánico , Nicotiana , Sphagnopsida , Nicotiana/crecimiento & desarrollo , Nicotiana/fisiología , Fotosíntesis , Especies Reactivas de Oxígeno , Metabolismo de los Lípidos , Hojas de la Planta , Análisis de Componente Principal , Sequías , AguaRESUMEN
Together with rice, weeds strive for nutrients and space in farmland, resulting in reduced rice yield and quality. Planting herbicide-resistant rice varieties is one of the effective ways to control weeds. In recent years, a series of breakthroughs have been made to generate herbicide-resistant germplasm, especially the emergence of biotechnological tools such as gene editing, which provides an inherent advantage for the knock-out or knock-in of the desired genes. In order to develop herbicide-resistant rice germplasm resources, gene manipulation has been conducted to enhance the herbicide tolerance of rice varieties through the utilization of techniques such as physical and chemical mutagenesis, as well as genome editing. Based on the current research and persisting problems in rice paddy fields, research on the generation of herbicide-resistant rice still needs to explore genetic mechanisms, stacking multiple resistant genes in a single genotype, and transgene-free genome editing using the CRISPR system. Current rapidly developing gene editing technologies can be used to mutate herbicide target genes, enabling targeted genes to maintain their biological functions, and reducing the binding ability of target gene encoded proteins to corresponding herbicides, ultimately resulting in herbicide-resistant crops. In this review article, we have summarized the utilization of conventional and modern approaches to develop herbicide-resistant cultivars in rice as an effective strategy for weed control in paddy fields, and discussed the technology and research directions for creating herbicide-resistant rice in the future.
Asunto(s)
Herbicidas , Oryza , Oryza/genética , Herbicidas/farmacología , Malezas , Biotecnología , Productos Agrícolas/genética , Resistencia a los Herbicidas/genéticaRESUMEN
Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.
Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Frutas/genética , Frutas/efectos de los fármacos , Frutas/metabolismo , Vanadio/farmacología , Estrés Fisiológico/genética , Caragana/genética , Caragana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica , Sequías , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , CactaceaeRESUMEN
Heavy metals have been recognized as a prominent hazard in today's world, causing pollution in the air environment. Woody tree species can play a significant role in the extraction and remediation of metal pollutants from the air, therefore promoting the air quality index. This study investigated the potential of four species of the Ficus genus (F. benjamina, F. microcarpa, F. religiosa, and F. virens) to remediate varying levels of heavy metal contamination in industrial, residential, and highway areas of Faisalabad City, Pakistan. For this purpose, six heavy metals (cadmium, chromium, copper, lead, zinc, and manganese) were assessed in young leaves (YL) as well as old leaves (OL) of subjected tree species at selected study sites. Eight fully expanded leaves were selected from each tree species: two from each cardinal direction from the shoot of the current year (young leaves, YL), as well as from the shoot of the previous year (old leaves, OL). The results showed that the same genus has different capabilities to accumulate different heavy metals, and the overall trend was in the following order: F. virens > F. religiosa > F. benjamina > F. microcarpa at all study sites. The heavy metal contents in both YL and OL of selected tree species decreased in the order of Manganese (Mn)> Zinc (Zn)> Copper (Cu) > Chromium (Cr) > Lead (Pb) > Cadmium (Cd) at all study sites. The metal accumulation index (MAI) values ranged between 2.14-5.42 for F. benjamina, 2.09-3.89 for F. microcarpa, 3.61-7.01 for F. religiosa and 4.77-6.48 for F. virens across all study sites. Among the studied tree species, it has been determined that F. virens and F. religiosa are well-suited for urban areas with significant heavy metal contamination and can be strategically planted in barrier areas to effectively combat atmospheric pollution.
Asunto(s)
Biodegradación Ambiental , Ficus , Metales Pesados , Hojas de la Planta , Ficus/metabolismo , Ficus/química , Metales Pesados/análisis , Metales Pesados/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Pakistán , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismoRESUMEN
The cultivation of forage crops on wastewater-irrigated soils, while common in many developing countries, poses significant risks due to heavy metal pollution, particularly Lead (Pb) and Nickel (Ni). This practice, aimed at addressing water scarcity challenges and providing affordable irrigation, was investigated for its ecological and human health implications across three diverse sites (site A, site B, and site C). Our study unveiled increases in Pb concentrations in contaminated soil, cultivated with Sesbania bispinosa showing the highest Pb accumulation. The Ni concentrations ranged from 5.34 to 10.43 across all forage crop samples, with S. fruticosa from site C displaying the highest Ni concentration and S. bicolor from site A exhibiting the lowest. Trace element concentrations in the specimens were determined using an atomic absorption spectrophotometer. The Pb levels in the blood, hair, and feces of farm ruminants (cows, buffaloes, and sheep) varied across the sites, with buffaloes consistently displaying the highest Pb levels. Insights into daily Pb intake by ruminant's highlighted variations influenced by plant species, animal types, and sites, with site C, the cows exhibiting the highest Health Risk Index (HRI) associated with lead exposure from consuming forage crops. Soil and forage samples showed Pb concentrations ranging from 8.003 to 12.29â¯mg/kg and 6.69-10.52â¯mg/kg, respectively, emphasizing the severe health risks associated with continuous sewage usage. Variations in Ni concentrations across animal blood, hair, and feces samples underscored the importance of monitoring Ni exposure in livestock, with sheep at site B consistently showing the highest Ni levels. These findings highlight the necessity of vigilance in monitoring trace element (Pb and Ni) exposure in forage crops and livestock, to mitigate potential health risks associated with their consumption, with variations dependent on species, site, and trace element concentrations.
Asunto(s)
Productos Agrícolas , Plomo , Níquel , Contaminantes del Suelo , Níquel/análisis , Níquel/toxicidad , Animales , Contaminantes del Suelo/análisis , Plomo/análisis , Monitoreo del Ambiente , Rumiantes , Ovinos , Bovinos , Suelo/química , GranjasRESUMEN
Soil contamination with chromium (Cr) is becoming a primary ecological and health concern, specifically in the Kasur and Sialkot regions of Pakistan. The main objective of the current study was to evaluate the impact of foliar application of zinc oxide nanoparticles (ZnO NPs) (0, 25, 50, 100 mg L-1) and Fe NPs (0, 5, 10, 20 mg L-1) in red sails lettuce plants grown in Cr-contaminated soil. Our results showed that both ZnO and Fe NPs improved plant growth, and photosynthetic attributes by minimizing oxidative stress in lettuce plants through the stimulation of antioxidant enzyme activities. At ZnO NPs (100 mgL-1), dry weights of shoots and roots and fresh weights of shoots and roots were improved by 53%, 58%, 34%, and 45%, respectively, as compared to the respective control plants. The Fe NPs treatment (20 mgL-1) increased the dry weight of shoots and the roots and fresh weights of shoots and roots by 53%, 76%, 42%, and 70%, respectively. Application of both NPs reduced the oxidative stress caused by Cr, as evident by the findings of the current study, i.e., at the ZnO NPs (100 mgL-1) and Fe NPs (20 mgL-1), the EL declined by 32% and 44%, respectively, in comparison with respective control plants. Moreover, Fe and ZnO NPs enhanced the Fe and Zn contents in red sails lettuce plants. Application of ZnO NPs at 100 mg L-1 and Fe NPs at 20 mg L-1, improved the Zn and Fe contents in plant leaves by 86%, and 68%, respectively, as compared to the control plants. This showed that the exogenous application of these NPs helped in Zn and Fe fortification in plants. At similar of concenteration ZnO NPs, CAT and APX activities were improved by 52% and 53%, respectively. Similarly, the POD contents were improved by 17% and 45% at 5 and 10 mg/L of Fe NPs. Furthermore, ZnO and Fe NPs limited the Cr uptake by plants, and the concentration of Cr in the leaves of lettuce was under the threshold limit. The exogenous application of ZnO NPs (100 mg L-1) and Fe NPs (20 mg L-1) reduced the Cr uptake in the leaves of red sails lettuce by 57% and 51%, respectively. In conclusion, ZnO and Fe NPs could be used for the improvement of plant growth and biomass as well as nutrient fortification in stressed environments. These findings not only underscore the efficacy of nanoparticle-assisted phytoremediation but also highlight its broader implications for sustainable agriculture and environmental health. However, future studies on other crops with molecular-level investigations are recommended for the validation of the results.
ZnO and Fe NPs improved the growth and photosynthesis of red sails lettuce plantsBoth NPs enhanced antioxidants enzymes activities in stressed plantsNPs mediated response reduced the oxidative stress and Cr uptake in red sails lettuceZnO and Fe NPs resulted in Zn and Fe fortification, respectively, in red sails lettuce.
Asunto(s)
Antioxidantes , Biodegradación Ambiental , Cromo , Hierro , Lactuca , Nanopartículas del Metal , Contaminantes del Suelo , Óxido de Zinc , Cromo/metabolismo , Lactuca/metabolismo , Lactuca/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Hierro/metabolismo , Antioxidantes/metabolismo , Estrés OxidativoRESUMEN
In response to evolving climatic conditions, plants frequently confront multiple abiotic stresses, necessitating robust adaptive mechanisms. This study focuses on the responses of Selenicereus undatus L. to both individual stresses (cadmium; Cd, salt; S, and drought; D) and their combined applications, with an emphasis on evaluating the mitigating effects of (M) melatonin. Through transcriptome analysis, this study identifies significant gene expression changes and regulatory network activations. The results show that stress decreases pitaya growth rates by 30%, reduces stem and cladode development by 40%, and increases Cd uptake under single and combined stresses by 50% and 70%, respectively. Under stress conditions, enhanced activities of H2O2, POD, CAT, APX, and SOD and elevated proline content indicate strong antioxidant defenses. We identified 141 common DEGs related to stress tolerance, most of which were related to AtCBP, ALA, and CBP pathways. Interestingly, the production of genes related to signal transduction and hormones, including abscisic acid and auxin, was also significantly induced. Several calcium-dependent protein kinase genes were regulated during M and stress treatments. Functional enrichment analysis showed that most of the DEGs were enriched during metabolism, MAPK signaling, and photosynthesis. In addition, weighted gene co-expression network analysis (WGCNA) identified critical transcription factors (WRKYs, MYBs, bZIPs, bHLHs, and NACs) associated with antioxidant activities, particularly within the salmon module. This study provides morpho-physiological and transcriptome insights into pitaya's stress responses and suggests molecular breeding techniques with which to enhance plant resistance.
Asunto(s)
Cactaceae , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Melatonina , Estrés Fisiológico , Transcriptoma , Melatonina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Redes Reguladoras de Genes/efectos de los fármacos , Cactaceae/genética , Cactaceae/metabolismo , Perfilación de la Expresión Génica/métodos , Sequías , Antioxidantes/metabolismo , Cadmio/toxicidadRESUMEN
BACKGROUND: One of the most important cash crops worldwide is rice (Oryza sativa L.). Under varying climatic conditions, however, its yield is negatively affected. In order to create rice varieties that are resilient to abiotic stress, it is essential to explore the factors that control rice growth, development, and are source of resistance. HSFs (heat shock transcription factors) control a variety of plant biological processes and responses to environmental stress. The in-silico analysis offers a platform for thorough genome-wide identification of OsHSF genes in the rice genome. RESULTS: In this study, 25 randomly dispersed HSF genes with significant DNA binding domains (DBD) were found in the rice genome. According to a gene structural analysis, all members of the OsHSF family share Gly-66, Phe-67, Lys-69, Trp-75, Glu-76, Phe-77, Ala-78, Phe-82, Ile-93, and Arg-96. Rice HSF family genes are widely distributed in the vegetative organs, first in the roots and then in the leaf and stem; in contrast, in reproductive tissues, the embryo and lemma exhibit the highest levels of gene expression. According to chromosomal localization, tandem duplication and repetition may have aided in the development of novel genes in the rice genome. OsHSFs have a significant role in the regulation of gene expression, regulation in primary metabolism and tolerance to environmental stress, according to gene networking analyses. CONCLUSION: Six genes viz; Os01g39020, Os01g53220, Os03g25080, Os01g54550, Os02g13800 and Os10g28340 were annotated as promising genes. This study provides novel insights for functional studies on the OsHSFs in rice breeding programs. With the ultimate goal of enhancing crops, the data collected in this survey will be valuable for performing genomic research to pinpoint the specific function of the HSF gene during stress responses.
Asunto(s)
Oryza , Oryza/genética , Factores de Transcripción del Choque Térmico/genética , Fitomejoramiento , Productos Agrícolas , Redes Reguladoras de GenesRESUMEN
Laron syndrome (LS) is a rare autosomal recessively segregating disorder of severe short stature. The condition is characterized by short limbs, delayed puberty, hypoglycemia in infancy, and obesity. Mutations in growth hormone receptor (GHR) have been implicated in LS; hence, it is also known as growth hormone insensitivity syndrome (MIM-262500). Here we represent a consanguineous Pakistani family in which three siblings were afflicted with LS. Patients had rather similar phenotypic presentations marked with short stature, delayed bone age, limited extension of elbows, truncal obesity, delayed puberty, childish appearance, and frontal bossing. They also had additional features such as hypo-muscularity, early fatigue, large ears, widely-spaced breasts, and attention deficit behavior, which are rarely reported in LS. The unusual combination of the features hindered a straightforward diagnosis and prompted us to first detect the regions of shared homozygosity and subsequently the disease-causing variant by next generation technologies, like SNP genotyping and exome sequencing. A homozygous pathogenic variant c.508G>C (p.(Asp170His)) in GHR was detected. The variant is known to be implicated in LS, supporting the molecular diagnosis of LS. Also, we present detailed clinical, hematological, and hormonal profiling of the siblings.
Asunto(s)
Síndrome de Laron , Pubertad Tardía , Humanos , Síndrome de Laron/genética , Síndrome de Laron/diagnóstico , Mutación/genética , Obesidad , Pakistán , Receptores de Somatotropina/genéticaRESUMEN
Abiotic stresses, such as drought, salinity, heat, cold, and heavy metals, are associated with global climate change and hamper plant growth and development, affecting crop yields and quality. However, the negative effects of abiotic stresses can be mitigated through exogenous treatments using small biomolecules. For example, the foliar application of melatonin provides the following: it protects the photosynthetic apparatus; it increases the antioxidant defenses, osmoprotectant, and soluble sugar levels; it prevents tissue damage and reduces electrolyte leakage; it improves reactive oxygen species (ROS) scavenging; and it increases biomass, maintains the redox and ion homeostasis, and improves gaseous exchange. Glutathione spray upregulates the glyoxalase system, reduces methylglyoxal (MG) toxicity and oxidative stress, decreases hydrogen peroxide and malondialdehyde accumulation, improves the defense mechanisms, tissue repairs, and nitrogen fixation, and upregulates the phytochelatins. The exogenous application of proline enhances growth and other physiological characteristics, upregulates osmoprotection, protects the integrity of the plasma lemma, reduces lipid peroxidation, increases photosynthetic pigments, phenolic acids, flavonoids, and amino acids, and enhances stress tolerance, carbon fixation, and leaf nitrogen content. The foliar application of glycine betaine improves growth, upregulates osmoprotection and osmoregulation, increases relative water content, net photosynthetic rate, and catalase activity, decreases photorespiration, ion leakage, and lipid peroxidation, protects the oxygen-evolving complex, and prevents chlorosis. Chemical priming has various important advantages over transgenic technology as it is typically more affordable for farmers and safe for plants, people, and animals, while being considered environmentally acceptable. Chemical priming helps to improve the quality and quantity of the yield. This review summarizes and discusses how exogenous melatonin, glutathione, proline, and glycine betaine can help crops combat abiotic stresses.
Asunto(s)
Melatonina , Melatonina/metabolismo , Betaína/farmacología , Betaína/metabolismo , Prolina/farmacología , Prolina/metabolismo , Glutatión/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Fisiológico/fisiologíaRESUMEN
The use of complementary herbal medicines has recently increased in an attempt to find effective alternative therapies that reduce the adverse effects of chemical drugs. Portulacaria afra is a rich source of phytochemicals with high antioxidant activity, and thus may possess health benefits. This study used the latest developments in GC-MS coupling with molecular docking techniques to identify and quantify the phytoconstituents in P. afra tissue extracts. The results revealed that n-butanol P. afra (BUT-PA) dry extracts contained total phenolic and flavonoids contents of 21.69 ± 0.28 mgGAE/g and 196.58 ± 6.29 mgGAE/g, respectively. The significant potential of antioxidants was observed through CUPRIC, FRAP, and ABTS methods while the DPPH method showed a moderate antioxidants potential for P. afra. Enzymatic antioxidants, superoxide dismutase, peroxidase and catalase also showed a better response in the BUT-PA dry extracts. The thrombolytic activity of the BUT-PA extracts ranged from 0.4 ± 0.32 to 11.2 ± 0.05%. Similarly, hemolytic activity ranged from 5.76 ± 0.15 to 9.26 ± 0.15% using the standard (triton x) method. The BUTPA and CHPA showed moderate acetylcholinesterase and butrylcholinesterase inhibition, ranging from 40.78 ± 0.52 to 58.97 ± 0.33, compared to galantamine. The carrageenan induced hind-paw edema assay, while BUT-PA extracts showed anti-inflammatory properties in a dose-dependent manner. Furthermore, 20 compounds were identified in the BUTPA extracts by GC-MS. Molecular docking was performed to explore the synergistic effect of the GC-MS-identified compounds on COX-1 and COX-2 inhibition. A high binding affinity was observed for Stigmastan-3, 5-diene, Phthalic acid, 3. Alpha-Hydroxy-5, 16-androstenol. The computed binding energies of the compounds revealed that all the compounds have a synergistic effect, preventing inflammation. It was concluded that active phytochemicals were present in P. afra, with the potential for multiple pharmacological applications as a latent source of pharmaceutically important compounds. This should be further explored to isolate secondary metabolites that can be employed in the treatment of different diseases.
Asunto(s)
Antioxidantes , Caryophyllales , Acetilcolinesterasa , Antiinflamatorios/química , Antioxidantes/química , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacologíaRESUMEN
Genome editing (GE) has revolutionized the biological sciences by creating a novel approach for manipulating the genomes of living organisms. Many tools have been developed in recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural crop production for global food security. This critical review elaborates the GE tools used for crop improvement. These tools include mega-nucleases (MNs), such as zinc-finger nucleases (ZFNs), and transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Specifically, this review addresses the latest advancements in the role of CRISPR/Cas9 for genome manipulation for major crop improvement, including yield and quality development of biotic stress- and abiotic stress-tolerant crops. Implementation of this technique will lead to the production of non-transgene crops with preferred characteristics that can result in enhanced yield capacity under various environmental stresses. The CRISPR/Cas9 technique can be combined with current and potential breeding methods (e.g., speed breeding and omics-assisted breeding) to enhance agricultural productivity to ensure food security. We have also discussed the challenges and limitations of CRISPR/Cas9. This information will be useful to plant breeders and researchers in the thorough investigation of the use of CRISPR/Cas9 to boost crops by targeting the gene of interest.
Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas/genética , Edición Génica , Fitomejoramiento , Resistencia a la Enfermedad/genética , Calidad de los Alimentos , Abastecimiento de Alimentos , Ingeniería Genética , Genoma de Planta , Genómica/métodos , Plantas Modificadas GenéticamenteRESUMEN
Thousands of genes are involved in spermatogenesis, however, the functional roles of most these genes for male fertility remain to be discovered. This research focused to explore the function of evolutionarily conserved and testis-specific expressed gene 4930524B15Rik, which is known as C5orf47 in human. We generated 4930524B15Rik knockout mice by CRISPR/Cas9 technology and found 4930524B15Rik-/- mice were fertile. Furthermore, no averted abnormalities were observed in testis morphology, epididymal sperm contents and sperm morphology in 4930524B15Rik knockout mice. Subsequently, histological analysis of testicular tissue revealed intact structure of seminiferous tubules along with the presence of all types of germ cells in 4930524B15Rik-/- mice similar to wild type. Additionally, cytological analysis of spermatocytes displayed no significant differences in the prophase I progression of meiosis, further indicating that 4930524B15Rik have no essential function in mammalian spermatogenesis. Altogether, these results indicated that 4930524B15Rik is dispensable for fertility of male mice and these findings will help researchers to avoid future research overlap and to focus on genes that are crucial for spermatogenesis and reproduction.
Asunto(s)
Sitios Genéticos , Infertilidad Masculina/genética , Espermatogénesis , Animales , Secuencia Conservada , Evolución Molecular , Eliminación de Gen , Masculino , Ratones , Testículo/citología , Testículo/metabolismo , Testículo/fisiologíaRESUMEN
BACKGROUND: Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. RESULTS: Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. CONCLUSIONS: Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.
Asunto(s)
Brassica napus/genética , Brassica napus/fisiología , Citoplasma/genética , Genes de Plantas/genética , Genómica , Orgánulos/genética , Infertilidad Vegetal/genética , Brassica napus/citología , Genoma del Cloroplasto/genética , Genoma Mitocondrial/genética , Sistemas de Lectura Abierta/genéticaRESUMEN
BACKGROUND: Plant height is one of the most important agronomic traits in many crops due to its influence on lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with increased yield. RESULTS: Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a conventional line to develop a segregating F2 population. Bulks were formed from plants with either dwarf or conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap). The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis revealed that one SNP causing an amino acid change in the domain II of Bna.IAA7.C05 may contribute to the dwarf phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in Bna.IAA7.C05 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant. CONCLUSION: Our studies characterize a new allele of Bna.IAA7.C05 responsible for the dwarf mutant generated from tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant stature in B. napus.
Asunto(s)
Brassica napus/genética , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Alelos , Brassica napus/crecimiento & desarrollo , Brassica napus/fisiología , Mutación , Fenotipo , Fitomejoramiento , Técnicas de Cultivo de TejidosRESUMEN
Sustainability assessments have revealed that integration of CO2 from coal-fired flue gas with microalgae cultivation systems could reduce greenhouse gas emissions. The technical goal of this integration is to utilize exhaust from coal power plants to enhance microalgae cultivation processes by capturing and recycling of carbon dioxide from a more toxic to a less toxic form. However, heavy metals are also introduced along with CO2 to the cultivation system which could contaminate biomass and have deleterious effects on products derived from such systems. The present study aimed at shedding some light on capability of microalgae to sustain their diversity and propagate them under different CO2 concentrations from coal-fired flue gas. Mixed microalgal culture was grown in nutrient rich medium and heavy metals (Al, Cu, Fe, Mn and Zn) are expected to be introduced from flue gas. Three concentrations (1%, 3% and 5.5%) of CO2 were evaluated (reference concentrations from flue gas). Comparative studies were carried out by flue gas and control systems in photobioreactors. Under the 3% CO2 (30% flue gas), the highest fraction of B, Mn and Zn were found to be internalized by the cells (46.8 ±9.45 gL-1, 253.66 ± 40.62 gL-1 and 355.5 ±50.69 gL-1 respectively) during their cultivation period into biomass. Hence, microalgae may offer solution to two major challenges: providing potential biofuel feedstock for energy security and reducing heavy metal pollution to the air.