Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338984

RESUMEN

Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy. Levetiracetam (LEV) is an antiepileptic drug whose mechanism of action at the genetic level has not been fully described. Therefore, the aim of the present work was to evaluate the relevant gene expression changes in the dentate gyrus (DG) of LEV-treated rats with pilocarpine-induced TLE. Whole-transcriptome microarrays were used to obtain the differential genetic profiles of control (CTRL), epileptic (EPI), and EPI rats treated for one week with LEV (EPI + LEV). Quantitative RT-qPCR was used to evaluate the RNA levels of the genes of interest. According to the results of the EPI vs. CTRL analysis, 685 genes were differentially expressed, 355 of which were underexpressed and 330 of which were overexpressed. According to the analysis of the EPI + LEV vs. EPI groups, 675 genes were differentially expressed, 477 of which were downregulated and 198 of which were upregulated. A total of 94 genes whose expression was altered by epilepsy and modified by LEV were identified. The RT-qPCR confirmed that LEV treatment reversed the increased expression of Hgf mRNA and decreased the expression of the Efcab1, Adam8, Slc24a1, and Serpinb1a genes in the DG. These results indicate that LEV could be involved in nonclassical mechanisms involved in Ca2+ homeostasis and the regulation of the mTOR pathway through Efcab1, Hgf, SLC24a1, Adam8, and Serpinb1a, contributing to reduced hyperexcitability in TLE patients.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Piracetam , Humanos , Ratas , Animales , Levetiracetam/farmacología , Levetiracetam/uso terapéutico , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/genética , Transcriptoma , Piracetam/farmacología , Piracetam/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Giro Dentado
2.
Molecules ; 29(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542863

RESUMEN

From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-type diterpenoids were isolated. Their structures were established through spectroscopic methods and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-20-deoxy-salvicarranzanolide (3). In addition, the known icetexane-type diterpenoids, 6,7,11,14-tetrahydro-7-oxo-icetexone (4), iso-icetexone (5), 19-deoxo-iso-icetexone (6), icetexone (7), 19-deoxo-icetexone (8) and 7α-acetoxy-6,7-dihydroicetexone (9), were also isolated, along with the abietanes sessein (10) and ferruginol (11). α-Tocopherol was also identified. Compounds 5, 6 and 8 were tested for their antiproliferative activity using the sulforhodamine B assay on six cancer and one normal human cell lines. Diterpenoids 5 and 6 showed noteworthy antiproliferative activity, exhibiting an IC50 (µM) = 0.43 ± 0.01 and 1.34 ± 0.04, respectively, for U251 (glioblastoma), an IC50 (µM) = 0.45 ± 0.01 and 1.29 ± 0.06 for K5621 (myelogenous leukemia), 0.84 ± 0.07 and 1.03 ± 0.10 for HCT-15 (colon cancer), and 0.73 ± 0.06 and 0.95 ± 0.09 for SKLU-1 (lung adenocarcinoma) cell lines. On the other hand, the phytotoxicity of compounds 5-7 and 9-10 was evaluated on seed germination and root growth in some weeds such as Medicago sativa, Panicum miliaceum, Amaranthus hypochondriacus and Trifolium pratense as models. While compounds 5 and 10 exhibited a moderate inhibitory effect on the root growth of A. hypochondriacus and T. pratense at 100 ppm, the diterpenoids 6, 7 and 9 were ineffective in all the plant models. Taxonomic positions based on the chemical profiles found are also discussed.


Asunto(s)
Alcaloides , Diterpenos , Neoplasias Pulmonares , Salvia , Humanos , Abietanos/farmacología , Abietanos/química , Salvia/química , Diterpenos/farmacología , Diterpenos/química , Línea Celular Tumoral , Estructura Molecular
3.
Proteome Sci ; 21(1): 23, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049858

RESUMEN

BACKGROUND: Major depressive disorder (MDD) affects more than 350 million people worldwide, and there is currently no laboratory test to diagnose it. This pilot study aimed to identify potential biomarkers in peripheral blood mononuclear cells (PBMCs) from MDD patients. METHODS: We used tandem mass tagging coupled to synchronous precursor selection (mass spectrometry) to obtain the differential proteomic profile from a pool of PBMCs from MDD patients and healthy subjects, and quantitative PCR to assess gene expression of differentially expressed proteins (DEPs) of our interest. RESULTS: We identified 247 proteins, of which 133 had a fold change ≥ 2.0 compared to healthy volunteers. Using pathway enrichment analysis, we found that some processes, such as platelet degranulation, coagulation, and the inflammatory response, are perturbed in MDD patients. The gene-disease association analysis showed that molecular alterations in PBMCs from MDD patients are associated with cerebral ischemia, vascular disease, thrombosis, acute coronary syndrome, and myocardial ischemia, in addition to other conditions such as inflammation and diabetic retinopathy. CONCLUSIONS: We confirmed by qRT-PCR that S100A8 is upregulated in PBMCs from MDD patients and thus could be an emerging biomarker of this disorder. This report lays the groundwork for future studies in a broader and more diverse population and contributes to a deeper characterization of MDD.

4.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047461

RESUMEN

Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as a possible treatment against disease development. However, the evidence for these effects is limited. Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and 28 days after SE. TNF-α, IL-6, and IL-1ß concentrations were quantified. TOP and TAL (50 mg/kg) increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS frequency, as well as decreasing TNF-α and IL-1ß concentrations in the hippocampus. In conclusion, the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic effects, possibly by decreasing neuroinflammation.


Asunto(s)
Encefalitis , Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratas , Masculino , Animales , Pilocarpina/toxicidad , Litio/farmacología , Litio/uso terapéutico , Talidomida/farmacología , Talidomida/uso terapéutico , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Hipocampo/metabolismo , Modelos Animales de Enfermedad
5.
Dev Psychobiol ; 64(6): e22283, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748629

RESUMEN

Although individuals with schizophrenia typically present deficits in social interaction, little is known about the quality of their parent-infant interactions. In the present study, we assessed the behavioral effects of neonatal ventral hippocampus lesion (nVHL) in female rats (nVHL is known to induce schizophrenia-like deficits in males). Sexually naïve adult nVHL or sham female rats received cognitive and social tests, and their maternal behavior was observed in independent groups of adult nVHL and sham rats on postpartum days 2, 6, and 12. Compared to Sham females, naïve nVHL rats displayed elevated locomotor activity, less social interaction, and disrupted habituation of the acoustic startle response (ASR), while dorsal immobility (a defensive behavioral response) and prepulse inhibition of ASR were not affected. Although all nVHL mothers retrieved their pups, adopted the crouching posture, and nursed them, they showed disturbances in the display of pup body licking and nest building. Furthermore, a high proportion of nVHL mothers displayed atypical retrieval of pups and re-retrieving of pups, atypical nest-building, excavation, and cannibalism, as well a high level of these behaviors. These data indicate that cognition, locomotor activity, and maternal care is disrupted in nVHL female, suggesting disturbances in mesocorticolimbic dopaminergic systems and/or in social cognition.


Asunto(s)
Esquizofrenia , Animales , Animales Recién Nacidos , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Hipocampo , Humanos , Masculino , Conducta Materna , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto , Esquizofrenia/patología
6.
Behav Pharmacol ; 31(5): 491-499, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31850962

RESUMEN

Aging reduces the efficiency of the organs and systems, including the cognitive functions. Brain aging is related to a decrease in the vascularity, neurogenesis, and synaptic plasticity. Cerebrolysin, a peptide and amino acid preparation, has been shown to improve the cognitive performance in animal models of Alzheimer's disease. Similarly, the leucine-rich repeat transmembrane 4 protein exhibits a strong synaptogenic activity in the hippocampal synapses. The aim of this study was to evaluate the effect of the cerebrolysin treatment on the learning and memory abilities, sensorimotor functions, and the leucine-rich repeat transmembrane 4 protein expression in the brain of 15-month-old rats. Cerebrolysin (1076 mg/kg) or vehicle was administered to Wistar rats intraperitoneally for 4 weeks. After the treatments, learning and memory were tested using the Barnes maze test, and the acoustic startle response, and its pre-pulse inhibition and habituation were measured. Finally, the leucine-rich repeat transmembrane 4 expression was measured in the brainstem, striatum, and hippocampus using a Western-blot assay. The 15-month-old vehicle-treated rats showed impairments in the habituation of the acoustic startle response and in learning and memory when compared to 3-month-old rats. These impairments were attenuated by the subchronic cerebrolysin treatment. The leucine-rich repeat transmembrane 4 protein expression was lower in the old vehicle-treated rats than in the young rats; the cerebrolysin treatment attenuated that decrease in the old rats. The leucine-rich repeat transmembrane 4 protein was not expressed in striatum or brainstem. These results suggest that the subchronic cerebrolysin treatment enhances the learning and memory abilities in aging by increasing the expression of the leucine-rich repeat transmembrane 4 protein in the hippocampus.


Asunto(s)
Envejecimiento/efectos de los fármacos , Aminoácidos/farmacología , Cognición/efectos de los fármacos , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Proteínas del Tejido Nervioso/biosíntesis , Animales , Tronco Encefálico/metabolismo , Cuerpo Estriado/metabolismo , Habituación Psicofisiológica/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inhibición Prepulso/efectos de los fármacos , Ratas , Reflejo de Sobresalto
7.
Epilepsy Behav ; 97: 96-104, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31207446

RESUMEN

Temporal lobe epilepsy (TLE) is one of the most frequent forms of focal epilepsy; patients with this condition, in addition to exhibiting complex seizures, also exhibit cognitive deficits. In the temporal lobe, the hippocampus, a structure relevant to learning and memory processes, is particularly affected by epilepsy. In animal models of TLE induced by pilocarpine, learning and memory deficiencies associated with changes in synaptic plasticity of the hippocampus have been reported. Cerebrolysin (CBL) is a biologically active mixture of low molecular weight peptides with neuroprotective and neurotrophic effects. The objective of the present study was to determine whether subchronic CBL treatment of rats in the chronic phase of TLE reduces the number and intensity of seizures, and whether CBL treatment can improve cognitive deficits (learning and spatial memory) and dendritic morphology in granular dentate neurons of the hippocampus. Temporal lobe epilepsy (lithium-pilocarpine model) was induced in male Wistar rats (weight, 250-300 g). Two epileptic groups were studied, in which CBL (538 mg/kg) or vehicle was administered intraperitoneally for 5 consecutive days per week for 3 weeks. Respective controls were also included in the study. At the end of treatment, the Barnes maze test (BMT) was used to assess spatial navigational learning and memory. The dendritic morphology of the dentate gyrus was also evaluated using the Golgi-Cox staining method. Results of this study did not support an antiepileptic effect of CBL. Epileptic animals treated with this agent exhibited secondarily generalized seizures similar in frequency and intensity to those of epileptic animals treated only with vehicle. However, when analyzing dendritic morphology of hippocampal granular neurons in these animals, CBL appeared to attenuate dendritic deterioration caused by epilepsy, which was associated with improved cognitive performance of the CBL-treated animals in the BMT compared with vehicle-treated epileptic rats. In conclusion, although CBL did not exert an anticonvulsant effect against secondarily generalized seizures, it can be proposed for use as an add-on therapy in epilepsy management to prevent neuronal alterations, and to improve memory and learning processes.


Asunto(s)
Aminoácidos/farmacología , Cognición/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Epilepsia del Lóbulo Temporal/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Cognición/fisiología , Disfunción Cognitiva/fisiopatología , Giro Dentado/citología , Giro Dentado/patología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/patología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Agonistas Muscarínicos/toxicidad , Neuronas/patología , Pilocarpina/toxicidad , Ratas , Ratas Wistar , Memoria Espacial/efectos de los fármacos
8.
Synapse ; 71(10): e21991, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28681457

RESUMEN

It is well known that the survival is higher in women compared to men and women have a better survival prognosis than men in some pathologies such as vascular dementia (VD). Our previous reports showed that the spontaneously hypertensive (SH) rat, an animal model of VD, exhibited dendritic atrophy of pyramidal neurons of the dorsal hippocampus (DH) and the prefrontal cortex (PFC) at 8 months of age. Cerebrolysin (CBL), a neurotrophic peptide mixture, reduces dendritic atrophy and improves the memory process in aged rats. Here, we investigated whether one pregnancy or/and CBL was capable of improving cognitive behavior and neuronal alterations in old female SH rats. Diastolic and systolic blood pressure were assessed before pregnancy (3 months old) and CBL administration (6 months old), and after CBL administration (12 months old). Immediately after of 6 months of CBL treatment, locomotor activity in novel environments and memory and learning by the Morris Water Maze test were evaluated. By the Golgi-Cox staining method, dendritic parameters were assessed in PFC and DH. Our results suggest that rats with one pregnancy showed better memory with an enhancement in dendritic length and dendritic spine density in the aforementioned regions.

9.
Horm Behav ; 89: 23-29, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27988316

RESUMEN

Melatonin (MLT) is a neurohormone with significant involvement in several biological functions, of which antinociception and tonic immobility (TI) may be the key neurobehavioral components to survive in adverse conditions such as a predator attack. TI-induced antinociception can be elicited, facilitated, or increased through opioid and γ-aminobutyric acid (GABA) among other chemical mediators at several levels of the central nervous system, mainly in the periaqueductal gray (PAG). The aim of this study was to assess the effect of the microinjection of MLT into the main PAG regions that are related to different integrated defensive responses, namely dorsal (D) and ventrolateral (VL), on both antinociception through the tail-flick (TF) test and TI duration as single behavioral response and on combined behavioral responses (TF/TI). We found that the microinjection of MLT into the main PAG areas produced antinociception but did not affect the TI duration. The microinjection of MLT into the D-PAG decreased TF latency during TI in the combined trial (TF/TI), which implies that TI-induced antinociception was blocked. The microinjection of MLT into the VL-PAG maintained the antinociceptive capability of the TI without addition or increase in the antinociceptive effects, implying a permissive effect by MLT on the TI-induced antinociception. MLT administration into the D-PAG decreased the TI duration on the TF/TI, whereas MLT administration into the VL-PAG had the opposite effect of significantly increasing TI duration with the TF/TI trial.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Pérdida de Tono Postural/efectos de los fármacos , Melatonina/farmacología , Nocicepción/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Masculino , Melatonina/administración & dosificación , Ratas , Ratas Wistar
10.
Synapse ; 69(4): 213-25, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25682743

RESUMEN

Sigma (σ) receptors have generated a great deal of interest due to their possible role in psychosis, neuroprotection, and various other behaviors including addictive processes. Sigma receptors have been located in brain areas involved in motor functions, including the dopaminergic projections from the substantia nigra to the striatum. Evidence suggests that one of their major roles might be to regulate the activity of the glutamatergic system via the N-methyl-D-aspartate receptor. The sigma receptor agonist 1,3-di-o-tolyl-guanidine (DTG) was found to increase dopamine release in the striatum, nucleus accumbens, and prefrontal cortex, in a dose-dependent manner, after central as well as peripheral administration, suggesting a modulatory role of these receptors on the dopaminergic system. The present study examines whether chronic administration of the DTG sigma agonist induces neuromorphological and behavioral changes in neonatal ventral hippocampal lesioned (nVHL) rats as a neurodevelopmental model of schizophrenia. The results show that the DTG administration reduces the hyperlocomotor activity in nVHL rats and reverses the neuronal hypotrophy generated in nVHL rats in the prefrontal cortex, amygdala, and nucleus accumbens. Our results demonstrate that DTG, a sigma-1 receptor agonist, reverses some of the behavioral and neuromorphological effects of nVHL on the rat and supports the possibility that DTG may have beneficial effects in the management of symptoms of schizophrenia.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Conducta Animal/efectos de los fármacos , Lesiones Encefálicas , Guanidinas/uso terapéutico , Hipocampo/patología , Análisis de Varianza , Animales , Animales Recién Nacidos , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Conducta Exploratoria/efectos de los fármacos , Hipocampo/ultraestructura , Masculino , Actividad Motora/efectos de los fármacos , Inhibición Prepulso/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos , Tinción con Nitrato de Plata
11.
J Biomed Sci ; 22: 59, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26198255

RESUMEN

BACKGROUND: The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) influences nigral dopaminergic neurons via autocrine and paracrine mechanisms. The reduction of BDNF expression in Parkinson's disease substantia nigra (SN) might contribute to the death of dopaminergic neurons because inhibiting BDNF expression in the SN causes parkinsonism in the rat. This study aimed to demonstrate that increasing BDNF expression in dopaminergic neurons of rats with one week of 6-hydroxydopamine lesion recovers from parkinsonism. The plasmids phDAT-BDNF-flag and phDAT-EGFP, coding for enhanced green fluorescent protein, were transfected using neurotensin (NTS)-polyplex, which enables delivery of genes into the dopaminergic neurons via neurotensin-receptor type 1 (NTSR1) internalization. RESULTS: Two weeks after transfections, RT-PCR and immunofluorescence techniques showed that the residual dopaminergic neurons retain NTSR1 expression and susceptibility to be transfected by the NTS-polyplex. phDAT-BDNF-flag transfection did not increase dopaminergic neurons, but caused 7-fold increase in dopamine fibers within the SN and 5-fold increase in innervation and dopamine levels in the striatum. These neurotrophic effects were accompanied by a significant improvement in motor behavior. CONCLUSIONS: NTS-polyplex-mediated BDNF overexpression in dopaminergic neurons has proven to be effective to remit hemiparkinsonism in the rat. This BDNF gene therapy might be helpful in the early stage of Parkinson's disease.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Neuronas Dopaminérgicas , Neurotensina , Enfermedad de Parkinson , Sustancia Negra , Transfección/métodos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Terapia Genética/métodos , Masculino , Neurotensina/química , Neurotensina/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Ratas , Ratas Wistar , Receptores de Neurotensina/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología
12.
Synapse ; 68(3): 114-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24265191

RESUMEN

Several studies in rodents have suggested the inactivation of the subthalamic nucleus (STN) as an alternative strategy to Parkinson's disease (PD) treatment. The STN is part of the basal ganglia and plays an important role in the motor function; however, recent data suggest that this structure has a critical role in the cognitive function of the limbic system. The STN receives direct projection from the prefrontal cortex (PFC), structure interconnected with the hippocampus and both structures send excitatory projections to the nucleus accumbens (NAcc). Here, we determined whether and which changes occurred 4 weeks after a STN lesion in the dendritic morphology of pyramidal neurons of the layers 3 and 5 of the PFC and basolateral amygdala, neurons of the ventral hippocampus, and the medium spiny neurons of the NAcc and caudate-putamen. Dendritic morphology was measured using the Golgi-Cox procedure followed by Sholl analysis. We also evaluated the effects of STN lesion on locomotor behavior assessed by an open field test, social interaction, acoustic startle response, prepulse inhibition, and locomotor activity induced by a novel environment and amphetamine. We found that STN damage induced a deficit in locomotion measured by open field test with neuronal hypertrophy in PFC (layer 5) and reduced spinogenesis in CA1 ventral hippocampus and PFC (layer 3). Taken together, these data suggest that the behavioral and morphological effects of STN lesion are, at least partially, mediated by limbic subregions with possible consequences for cognitive-related behaviors observed in PD treatment.


Asunto(s)
Dendritas/patología , Hipocampo/patología , Neuronas/patología , Corteza Prefrontal/patología , Núcleo Subtalámico/lesiones , Amígdala del Cerebelo/patología , Animales , Núcleo Caudado/patología , Espinas Dendríticas/patología , Masculino , Actividad Motora , Núcleo Accumbens/patología , Putamen/patología , Células Piramidales/patología , Ratas , Ratas Sprague-Dawley , Filtrado Sensorial , Conducta Social , Núcleo Subtalámico/patología , Factores de Tiempo
13.
Foods ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38890948

RESUMEN

Obesity is a global health problem and is increasing in prevalence in most countries. Although obesity affects all age groups, children are the most vulnerable sector. Functional foods are novel formulated foods containing substances (i.e., nutrients, phytochemicals, probiotics, etc.) that have potential health-enhancing or disease-preventing value. The research objective was to study the possible beneficial effects of providing a functional food made with amaranth flour, chia seed, and curcumin extract on the metabolism and behavior of a rat model of childhood obesity. Male Wistar rat pups from two litters of different sizes, a normal litter (NL) (10 pups) and a small litter (SL) (4 pups), were used. After weaning, the rats were fed a hypercaloric diet (HD) or an HD supplemented with the functional food mixture. Body weight and energy intake were measured for seven weeks, and locomotor activity, learning, and memory tests were also performed. At the end of the experiment, glucose and lipid metabolism parameters were determined. The results showed that in this model of obesity produced by early overfeeding and the consumption of a hypercaloric diet, anxiety-like behaviors and metabolic alterations occurred in the rat offspring; however, the provision of the functional food failed to reduce or prevent these alterations, and an exacerbation was even observed in some metabolic indicators. Interestingly, in the NL rats, the provision of the functional food produced some of the expected improvements in health, such as significant decreases in body weight gain and liver cholesterol and non-significant decreases in adipose tissue and leptin and insulin serum levels.

14.
J Neurosci Res ; 90(1): 288-306, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21932359

RESUMEN

Neonatal ventral hippocampal lesion (nVHL) in rats has been widely used as a neurodevelopmental model to mimic schizophrenia-like behaviors. Recently, we reported that nVHLs result in dendritic retraction and spine loss in prefrontal cortex (PFC) pyramidal neurons and medium spiny neurons of the nucleus accumbens (NAcc). Cerebrolysin (Cbl), a neurotrophic peptide mixture, has been reported to ameliorate the synaptic and dendritic pathology in models of aging and neurodevelopmental disorder such as Rett syndrome. This study sought to determine whether Cbl was capable of reducing behavioral and neuronal alterations in nVHL rats. The behavioral analysis included locomotor activity induced by novel environment and amphetamine, social interaction, and sensoriomotor gating. The morphological evaluation included dendritic analysis by using the Golgi-Cox procedure and stereology to quantify the total cell number in PFC and NAcc. Behavioral data show a reduction in the hyperresponsiveness to novel environment- and amphetamine-induced locomotion, with an increase in the total time spent in social interactions and in prepulse inhibition in Cbl-treated nVHL rats. In addition, neuropathological analysis of the limbic regions also showed amelioration of dendritic retraction and spine loss in Cbl-treated nVHL rats. Cbl treatment also ameliorated dendritic pathology and neuronal loss in the PFC and NAcc in nVHL rats. This study demonstrates that Cbl promotes behavioral improvements and recovery of dendritic neuronal damage in postpubertal nVHL rats and suggests that Cbl may have neurotrophic effects in this neurodevelopmental model of schizophrenia. These findings support the possibility that Cbl has beneficial effects in the management of schizophrenia symptoms.


Asunto(s)
Aminoácidos/administración & dosificación , Conducta Animal/efectos de los fármacos , Hipocampo/lesiones , Neuronas , Fármacos Neuroprotectores/administración & dosificación , Esquizofrenia , Estimulación Acústica , Análisis de Varianza , Animales , Animales Recién Nacidos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Espinas Dendríticas/ultraestructura , Modelos Animales de Enfermedad , Femenino , Inhibición Psicológica , Relaciones Interpersonales , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/ultraestructura , Embarazo , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/etiología , Esquizofrenia/patología , Tinción con Nitrato de Plata
15.
Synapse ; 66(5): 373-82, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22170567

RESUMEN

Neonatal basolateral amygdala (nBLA) lesions in rats have been widely used as a neurodevelopmental model that mimics schizophrenia-like behaviors. Recently, we reported that nBLA lesions result in significant decreases in the dendritic spine number of layer 3 prefrontal cortex (PFC) pyramidal cells and medium spiny neurons of the nucleus accumbens (NAcc), which all changes after puberty. At present, we aimed to evaluate the effect of this lesion in pyramidal neurons of CA1 of the ventral hippocampus (VH) and layer 5 of the PFC. In order to assess the effects of nBLA lesions on the dendritic morphology of the PFC and VH neurons, we carried out nBLA lesions in rats on postnatal day (PD) 7, and then we studied the dendritic morphology of these two limbic subregions at prepubertal (PD35) and postpubertal (PD60) ages. Dendritic characteristics were measured by Golgi-Cox procedure followed by Sholl analysis. We also evaluated the effects of nBLA lesions on the prepulse inhibition (PPI) and acoustic startle responses. The nBLA lesion induced a significant increase in dendritic length of layer 5 pyramidal neurons of the PFC at both ages, with a decrease in the dendritic spines density after puberty. The spine density of CA1 VH pyramidal neurons showed significant decreases at both ages. PPI was decreased in adulthood in the animals with an nBLA lesion. These results show that an nBLA lesion alters the dendritic morphology at the level of the PFC and VH in distinct ways before puberty, suggesting a disconnection between these limbic structures at an early age, and increasing our understanding of the implications of the VH in early amygdala dysfunction in schizophrenia.


Asunto(s)
Amígdala del Cerebelo/lesiones , Región CA1 Hipocampal/patología , Espinas Dendríticas/patología , Corteza Prefrontal/patología , Células Piramidales/patología , Animales , Animales Recién Nacidos , Modelos Animales , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/fisiología , Esquizofrenia/patología
16.
Synapse ; 66(11): 938-49, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22826038

RESUMEN

Cerebrolysin (Cbl) shows neurotrophic and neuroprotective properties while donepezil (Dnp) is a potent acetylcholinesterase (AChE) inhibitor, both drugs are prescribed for Alzheimer's disease (AD) treatment. Previous studies have shown that the Dnp and Cbl administered separately, modify dendritic morphology of neurons in the prefrontal cortex and hippocampus in senile rodents. Since the deficit of neurotrophic factor activity is implicated in the degeneration of cholinergic neurons of basal forebrain, a combination therapy of Dnp and Cbl has been tested recently in Alzheimer's patients. However, the plastic changes that may underlie this combined treatment have not yet been explored. We present here the effect of the combined administration of Cbl and Dnp on dendritic morphology in brain regions related to learning and memory in aged mice. The Golgi-Cox staining protocol and Sholl analysis were used for studying dendritic changes. Cbl and Dnp were administrated daily for 2 months to 9-months-old mice. Locomotor activity was assessed, as well as the dendritic morphology of neurons in several limbic regions was analyzed. Results showed that Cbl and Dnp induced an increase in locomotor activity without synergistic effect. The Cbl or Dnp treatment modified the dendritic morphology of neurons from prefrontal cortex (PFC), dorsal hippocampus (DH), dentate gyrus (DG), and the shell of nucleus accumbens (NAcc). These changes show an increase in the total dendritic length and spine density, resulting in an improvement of dendritic arborization. Prominently, a synergistic effect of Cbl and Dnp was observed on branching order and total dendritic length of pyramidal neurons from PFC. These results suggest that Dnp and Cbl may induce plastic changes in a manner independent of each other, but could enhance their effect in target cells from PFC.


Asunto(s)
Aminoácidos/farmacología , Indanos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Nootrópicos/farmacología , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Envejecimiento , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Donepezilo , Sinergismo Farmacológico , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/citología , Células Piramidales/efectos de los fármacos
17.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455472

RESUMEN

Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.

18.
Synapse ; 65(10): 1062-72, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21465567

RESUMEN

Apamin is a neurotoxin extracted from honey bee venom and is a selective blocker of small-conductance Ca²âº-activated K⁺ channels (SK). Several behavioral and electrophysiological studies indicate that SK-blockade by apamin may enhance neuron excitability, synaptic plasticity, and long-term potentiation in the CA1 hippocampal region, and, for that reason, apamin has been proposed as a therapeutic agent in Alzheimer's disease treatment. However, the dendritic morphological mechanisms implied in such enhancement are unknown. In the present work, Golgi-Cox stain protocol and Sholl analysis were used to study the effect of apamin on the dendritic morphology of pyramidal neurons from hippocampus and the prefrontal cortex as well as on the medium spiny neurons from the nucleus accumbens and granule cells from the dentate gyrus (DG) of the hippocampus. We found that only granule cells from the DG and pyramidal neurons from dorsal and ventral hippocampus were altered in senile rats injected with apamin. Our research suggests that apamin may increase the dendritic morphology in the hippocampus, which could be related to the neuronal excitability and synaptic plasticity enhancement induced by apamin.


Asunto(s)
Apamina/farmacología , Forma de la Célula/efectos de los fármacos , Dendritas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Plasticidad Neuronal/efectos de los fármacos , Envejecimiento/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Forma de la Célula/fisiología , Dendritas/patología , Dendritas/fisiología , Hipocampo/fisiología , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/patología , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley
19.
Horm Behav ; 60(4): 448-56, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21820440

RESUMEN

Tonic immobility (TI) is also known as "immobility response", "immobility reflex", "animal hypnosis", etc. It is an innate antipredatory behavior characterized by an absence of movement, varying degrees of muscular activity, and a relative unresponsiveness to external stimuli. Experimentally, TI is commonly produced by manually forcing an animal into an inverted position and restraining it in that position until the animal becomes immobile. Part of the neural mechanism(s) of TI involves the medullo-pontine reticular formation, with influence from other components of the brain, notably the limbic system. It has been observed that TI is more prolonged in stressed animals, and systemic injection of corticosterone (CORT) also potentiates this behavior. At present, the anatomical brain regions involved in the CORT modulation of TI are unknown. Thus, our study was made to determine if some pontine areas could be targets for the modulation of TI by CORT. A unilateral nucleus pontis oralis (PnO) microinjection of 1 µL of CORT (0.05 µg/1 µL) in rats resulted in clear behavioral responses. The animals had an increased duration of TI caused by clamping the neck (in this induction, besides of body inversion and restraint, there is also clamping the neck), with an enhancement in open-field motor activity, which were prevented by pretreatment injection into PnO with 1 µL of the mineralocorticoid-receptor antagonist spironolactone (0.5 µg/1 µL) or 1 µL of the glucocorticoid-receptor antagonist mifepristone (0.5 µg/1 µL). In contrast, these behavioral changes were not seen when CORT (0.05 µg/1 µL) was microinjected into medial lemniscus area or paramedian raphe. Our data support the idea that, in stressful situations, glucocorticoids released from adrenals of the prey reach the PnO to produce a hyper arousal state, which in turn can prolong the duration of TI.


Asunto(s)
Encéfalo/efectos de los fármacos , Corticosterona/farmacología , Pérdida de Tono Postural/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/patología , Encéfalo/fisiología , Corticosterona/administración & dosificación , Antagonistas de Hormonas/farmacología , Pérdida de Tono Postural/fisiología , Inyecciones Intraventriculares , Masculino , Microinyecciones , Antagonistas de Receptores de Mineralocorticoides , Modelos Biológicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Receptores de Glucocorticoides/antagonistas & inhibidores , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
20.
J Dev Orig Health Dis ; 12(3): 411-419, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32519631

RESUMEN

Experimental studies have demonstrated the effects of maternal fructose consumption during pregnancy and lactation on metabolic alterations in their offspring, especially male offspring. However, few studies have focused on female offspring after providing fructose in food to dam rats. Here, we studied whether offspring of both sexes were differentially affected by a maternal high-fructose diet (HFD). For this purpose, Sprague-Dawley rats were fed during pregnancy and lactation with a standard diet (SD) or a HFD (50% w/w). After weaning, offspring were fed an SD; 3 days later, dams were sacrificed, and their offspring were sacrificed on postnatal day 90. Body weight (BW), food and water intake (only for dams), and various biomarkers of metabolic syndrome were measured. When compared to the SD-fed dams, HFD-fed dams had a reduction in BW and food and water intake. Conversely, adiposity, liver weight, liver lipids, and plasma levels of glucose, insulin, cholesterol, triglycerides, and uric acid were increased in HFD-fed dams. Moreover, the BW, food consumption, weight of retroperitoneal fat pads, and liver lipids increased in female and male offspring of HFD-fed dams. Interestingly, the pups of HFD-fed mothers showed increased levels of leptin and insulin resistance and decreased levels of adiponectin which were more pronounced in male offspring than in female offspring. In contrast, a higher increase in BW was shown earlier in female offspring. Thus, high-fructose consumption by dams during pregnancy and lactation led to sex-specific developmental programming of the metabolic syndrome phenotype in adult offspring.


Asunto(s)
Azúcares de la Dieta/efectos adversos , Desarrollo Fetal , Fenómenos Fisiologicos Nutricionales Maternos , Síndrome Metabólico/etiología , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Ganancia de Peso Gestacional , Lactancia , Masculino , Embarazo , Ratas Sprague-Dawley , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA