Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 453(7192): 190-5, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18354394

RESUMEN

The design of new enzymes for reactions not catalysed by naturally occurring biocatalysts is a challenge for protein engineering and is a critical test of our understanding of enzyme catalysis. Here we describe the computational design of eight enzymes that use two different catalytic motifs to catalyse the Kemp elimination-a model reaction for proton transfer from carbon-with measured rate enhancements of up to 10(5) and multiple turnovers. Mutational analysis confirms that catalysis depends on the computationally designed active sites, and a high-resolution crystal structure suggests that the designs have close to atomic accuracy. Application of in vitro evolution to enhance the computational designs produced a >200-fold increase in k(cat)/K(m) (k(cat)/K(m) of 2,600 M(-1)s(-1) and k(cat)/k(uncat) of >10(6)). These results demonstrate the power of combining computational protein design with directed evolution for creating new enzymes, and we anticipate the creation of a wide range of useful new catalysts in the future.


Asunto(s)
Simulación por Computador , Evolución Molecular Dirigida/métodos , Enzimas/química , Enzimas/metabolismo , Ingeniería de Proteínas/métodos , Algoritmos , Secuencias de Aminoácidos , Sitios de Unión/genética , Catálisis , Biología Computacional , Cristalografía por Rayos X , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Enzimas/genética , Cinética , Modelos Químicos , Modelos Moleculares , Teoría Cuántica , Sensibilidad y Especificidad
2.
Protein Sci ; 16(2): 165-75, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17189483

RESUMEN

We describe the development of a method for assembling structures of multidomain proteins from structures of isolated domains. The method consists of an initial low-resolution search in which the conformational space of the domain linker is explored using the Rosetta de novo structure prediction method, followed by a high-resolution search in which all atoms are treated explicitly and backbone and side chain degrees of freedom are simultaneously optimized. The method recapitulates, often with very high accuracy, the structures of existing multidomain proteins.


Asunto(s)
Biología Computacional/métodos , Estructura Terciaria de Proteína , Proteínas/química , Simulación por Computador , Modelos Moleculares , Estructura Secundaria de Proteína
3.
Protein Sci ; 15(12): 2785-94, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17132862

RESUMEN

The creation of novel enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Here we describe two new algorithms for enzyme design that employ hashing techniques to allow searching through large numbers of protein scaffolds for optimal catalytic site placement. We also describe an in silico benchmark, based on the recapitulation of the active sites of native enzymes, that allows rapid evaluation and testing of enzyme design methodologies. In the benchmark test, which consists of designing sites for each of 10 different chemical reactions in backbone scaffolds derived from 10 enzymes catalyzing the reactions, the new methods succeed in identifying the native site in the native scaffold and ranking it within the top five designs for six of the 10 reactions. The new methods can be directly applied to the design of new enzymes, and the benchmark provides a powerful in silico test for guiding improvements in computational enzyme design.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Enzimas/química , Ingeniería de Proteínas/métodos , Animales , Bacillus/enzimología , Sitios de Unión , Carboxiliasas/química , Carboxiliasas/metabolismo , Bovinos , Cristalografía , Activación Enzimática , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Modelos Moleculares , Virus de Plantas/enzimología , Conformación Proteica , Saccharomyces cerevisiae/enzimología
4.
Nucleic Acids Res ; 31(11): 2952-62, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12771221

RESUMEN

Homologous gene targeting is the ultimate tool for reverse genetics, but its use is often limited by low efficiency. In a number of recent studies, site- specific DNA double-strand breaks (DSBs) have been used to induce efficient gene targeting. Engineering highly specific, dedicated DNA endonucleases is the key to a wider usage of this technology. In this study, we present two novel, chimeric meganucleases, derived from homing endonucleases. The first one is able to induce recombination in yeast and mammalian cells, whereas the second cleaves a novel (chosen) DNA target site. These results are a first step toward the generation of custom endonucleases for the purpose of targeted genome engineering.


Asunto(s)
Enzimas de Restricción del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Ingeniería de Proteínas , Recombinación Genética , Levaduras/genética , Animales , Secuencia de Bases , Células COS , ADN/metabolismo , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Calor , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
5.
Curr Opin Biotechnol ; 29: 132-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24794534

RESUMEN

Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes.


Asunto(s)
Ingeniería Metabólica/métodos , Ingeniería de Proteínas/métodos , Biología Sintética/métodos , Biocatálisis
6.
Methods Mol Biol ; 1216: 197-210, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25213417

RESUMEN

In this review we present a recently developed computational method to design de novo enzymes. Starting from the three-dimensional arrangement of the transition state structure and the catalytic side chains around it (theozyme), RosettaMatch identifies successful placements of the theozyme into protein scaffolds. Subsequently, RosettaEnzDes (for EnzymeDesign) redesigns the active site around the theozyme for binding and stabilization of the transition state and the catalytic residues. The resulting computationally designed enzymes are expressed and experimentally tested for catalytic activity.


Asunto(s)
Enzimas/química , Sitios de Unión/fisiología , Catálisis , Dominio Catalítico/fisiología , Biología Computacional/métodos , Ingeniería de Proteínas/métodos
7.
Science ; 329(5989): 309-13, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20647463

RESUMEN

The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond-forming reactions should be broadly useful in synthetic chemistry.


Asunto(s)
Carbono/química , Diseño Asistido por Computadora , Enzimas/química , Ingeniería de Proteínas , Proteínas/química , Acrilamidas/química , Algoritmos , Butadienos/química , Catálisis , Dominio Catalítico , Fenómenos Químicos , Simulación por Computador , Cristalografía por Rayos X , Enzimas/genética , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagénesis , Conformación Proteica , Proteínas/genética , Programas Informáticos , Estereoisomerismo , Especificidad por Sustrato
8.
Science ; 319(5868): 1387-91, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18323453

RESUMEN

The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.


Asunto(s)
Aldehído-Liasas/química , Algoritmos , Aldehído-Liasas/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA