Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Mater ; 21(5): 555-563, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301475

RESUMEN

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Asunto(s)
Polímeros , Agua , Aniones , Intercambio Iónico , Iones , Membranas Artificiales , Polímeros/química , Agua/química
2.
Phys Chem Chem Phys ; 24(24): 15083-15090, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35698855

RESUMEN

Modern phospholipid membranes are known to be in a functional, physiological state, corresponding to the liquid crystalline phase, only under very precise external conditions. The phase is characterised by specific lipid motions, which seem mandatory to permit sufficient flexibility and stability for the membrane. It can be assumed that similar principles hold for proto-membranes at the origin of life although they were likely composed of simpler, single chain fatty acids and alcohols. In the present study we investigated molecular motions of four types of model membranes to shed light on the variations of dynamics and structure from low to high temperature as protocells might have existed close to hot vents. We find a clear hierarchy among the flexibilities of the samples, where some structural parameters seem to depend on the lipid type used while others do not.


Asunto(s)
Células Artificiales , Fosfolípidos , Calor , Membrana Dobles de Lípidos/química , Movimiento (Física) , Fosfolípidos/química , Temperatura
3.
J Chem Phys ; 154(9): 094505, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685146

RESUMEN

We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm-4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.

4.
Phys Chem Chem Phys ; 18(23): 15751-9, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27225228

RESUMEN

A fundamental understanding of the doping effect on the hydration mechanism and related proton diffusion pathways are keys to the progress of Proton-Solid Oxide Fuel Cell (H(+)-SOFC) technologies. Here, we elucidate the possible interplay between the crystal structure upon hydration and the conductivity properties in a promising perovskite type H(+)-SOFC electrolyte, BaIn0.6Yb0.2Ti0.2O2.6-n(OH)2n. Thermal X-ray and neutron diffractions, neutron time-of-flight scattering along with thermal gravimetric analysis reveal the structural features of BaIn0.6Ti0.2Yb0.2O2.6-n(OH)2n at fuel cell operating temperatures. Between 400-600 °C, BaIn0.6Yb0.2Ti0.2O2.6-n(OD)2n (n < 0.042) remains in a disordered perovskite structure with high anisotropies in the form of oblate spheroids for oxygen. At 400 °C, the presence of oxygen and proton static disorder is clearly established. Yet, the insertion of mobile protons in 24k sites does not induce long-range structural distortion while facilitating both inter- and intra-octahedral proton transfers via quasi-linear O-DO bonds, strong hydrogen bonding, and octahedral tilting. This experimental evidence reveals that the co-doping approach on Ba2In2O5 enhances greatly protonic conductivity levels by enabling a continuous proton diffusion pathway through BaIn0.6Yb0.2Ti0.2O2.6-n(OH)2n. These new insights into the doping effect on the proton-transfer mechanism offer new perspectives for the development of H(+)-SOFC electrolyte materials.

5.
Langmuir ; 31(29): 8121-8, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26135844

RESUMEN

The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ξ ∼ 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process.


Asunto(s)
Silicio/química , Ácido Fluorhídrico/química , Método de Montecarlo , Porosidad , Solubilidad , Propiedades de Superficie
6.
Phys Chem Chem Phys ; 17(44): 29707-13, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26477584

RESUMEN

Obtaining solid-state electrolytes with good electrochemical performances remains challenging. Ionogels, i.e. solid host networks confining an ionic liquid, are promising as they keep the macroscopic properties of the liquid. However, confinement of an ionic liquid can imply important changes in its molecular dynamics, depending on the route of synthesis and on the confining network. We studied this effect on an imidazolium based ionic liquid with its lithium salt confined in a hybrid biopolymer-silica matrix. Dynamics of bulk and confined solution was probed by quasi-elastic neutron scattering (QENS) which revealed a weakly slowed dynamics of imidazolium-based ionic liquid inside the polymer-silica host network.

7.
Langmuir ; 29(44): 13465-72, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24083553

RESUMEN

If protein structure and function changes upon adsorption are well documented, modification of adsorbed protein dynamics remains a blind spot, despite its importance in biological processes. The adsorption of metmyoglobin on a silica surface was studied by isotherm measurements, microcalorimetry, circular dichroïsm, and UV-visible spectroscopy to determine the thermodynamic parameters of protein adsorption and consequent structure modifications. The mean square displacement and the vibrational densities of states of the adsorbed protein were measured by elastic and inelastic neutron scattering experiments. A decrease of protein flexibility and depletion in low frequency modes of myoglobin after adsorption on silica was observed. Our results suggest that the structure loss itself is not the entropic driving force of adsorption.


Asunto(s)
Metamioglobina/química , Metamioglobina/metabolismo , Dióxido de Silicio/química , Adsorción , Animales , Nanopartículas/química , Propiedades de Superficie , Termodinámica
8.
Phys Chem Chem Phys ; 15(39): 16693-703, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23986181

RESUMEN

In the present work we bridge neutron scattering and calorimetry in the study of a low-hydration sample of a 15-residue hybrid peptide from cecropin and mellitin CA(1-7)M(2-9) of proven antimicrobial activity. Quasielastic and low-frequency inelastic neutron spectra were measured at defined hydration levels - a nominally 'dry' sample (specific residual hydration h = 0.060 g/g), a H2O-hydrated (h = 0.49) and a D2O-hydrated one (h = 0.51). Averaged mean square proton mobilities were derived over a large temperature range (50-300 K) and the vibrational density of states (VDOS) were evaluated for the hydrated samples. The heat capacity of the H2O-hydrated CA(1-7)M(2-9) peptide was measured by adiabatic calorimetry in the temperature range 5-300 K, for different hydration levels. The glass transition and water crystallization temperatures were derived in each case. The existence of different types of water was inferred and their amounts calculated. The heat capacities as obtained from direct calorimetric measurements were compared to the values derived from the neutron spectroscopy by way of integrating appropriately normalized VDOS functions. While there is remarkable agreement with respect to both temperature dependence and glass transition temperatures, the results also show that the VDOS derived part represents only a fraction of the total heat capacity obtained from calorimetry. Finally our results indicate that both hydration water and the peptide are involved in the experimentally observed transitions.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Frío , Agua/química , Calorimetría , Difracción de Neutrones , Péptidos/química
9.
Phys Chem Chem Phys ; 14(14): 4927-34, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22388956

RESUMEN

The fundamental role of hydration water (also called interfacial water) is widely recognized in protein flexibility, especially in the existence of the so-called protein "dynamical transition" at around 220 K. In the present study, we take advantage of perdeuterated C-phycocyanin (CPC) and elastic incoherent neutron scattering (EINS) to distinguish between protein dynamics and interfacial water dynamics. Powders of hydrogenated (hCPC) and perdeuterated (dCPC) CPC protein have been hydrated, respectively, with D(2)O or H(2)O and measured by EINS to separately probe protein dynamics (hCPC/D(2)O) and water dynamics (dCPC/H(2)O) at different time- and length-scales. We find that "fast" (<20 ps) local mean-square displacements (MSD) of both protein and interfacial water coincide all along the temperature range, with the same dynamical transition temperature at ~220 K. On higher resolution (<400 ps), two different types of motions can be separated: (i) localized motions with the same amplitude for CPC and hydration water and two transitions at ~170 and ~240 K for both; (ii) large scale fluctuations exhibiting for both water molecules and CPC protein a single transition at ~240 K, with a significantly higher amplitude for the interfacial water than for CPC. Moreover, by comparing these motions with bulk water MSD measured under the same conditions, we show no coupling between bulk water dynamics and protein dynamics all along the temperature range. These results show that interfacial water is the main "driving force" governing both local and large scale motions in proteins.


Asunto(s)
Ficocianina/química , Agua/química , Deuterio/química , Simulación de Dinámica Molecular , Difracción de Neutrones , Ficocianina/metabolismo , Dispersión del Ángulo Pequeño , Temperatura de Transición
10.
Nat Commun ; 13(1): 7509, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473859

RESUMEN

High-Entropy Alloys (HEAs) are a new family of crystalline random alloys with four or more elements in a simple unit cell, at the forefront of materials research for their exceptional mechanical properties. Their strong chemical disorder leads to mass and force-constant fluctuations which are expected to strongly reduce phonon lifetime, responsible for thermal transport, similarly to glasses. Still, the long range order would associate HEAs to crystals with a complex disordered unit cell. These two families of materials, however, exhibit very different phonon dynamics, still leading to similar thermal properties. The question arises on the positioning of HEAs in this context. Here we present an exhaustive experimental investigation of the lattice dynamics in a HEA, Fe20Co20Cr20Mn20Ni20, using inelastic neutron and X-ray scattering. We demonstrate that HEAs present unique phonon dynamics at the frontier between fully disordered and ordered materials, characterized by long-propagating acoustic phonons in the whole Brillouin zone.

11.
Rev Sci Instrum ; 92(2): 024106, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648089

RESUMEN

In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10-9 s-10-12 s. Moreover, it can easily be modified for other scattering techniques.

12.
J Phys Condens Matter ; 33(26)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33906172

RESUMEN

Design and implementation of advanced membrane formulations for selective transport of ions and molecular species are critical for creating the next generations of fuel cells and separation devices. It is necessary to understand the detailed transport mechanisms over time- and length-scales relevant to the device operation, both in laboratory models and in working systems under realistic operational conditions. Neutron scattering techniques including quasi-elastic neutron scattering, reflectivity and imaging are implemented at beamline stations at reactor and spallation source facilities worldwide. With the advent of new and improved instrument design, detector methodology, source characteristics and data analysis protocols, these neutron scattering techniques are emerging as a primary tool for research to design, evaluate and implement advanced membrane technologies for fuel cell and separation devices. Here we describe these techniques and their development and implementation at the ILL reactor source (Institut Laue-Langevin, Grenoble, France) and ISIS Neutron and Muon Spallation source (Harwell Science and Technology Campus, UK) as examples. We also mention similar developments under way at other facilities worldwide, and describe approaches such as combining optical with neutron Raman scattering and x-ray absorption with neutron imaging and tomography, and carrying out such experiments in specialised fuel cells designed to mimic as closely possible actualoperandoconditions. These experiments and research projects will play a key role in enabling and testing new membrane formulations for efficient and sustainable energy production/conversion and separations technologies.

13.
Nanoscale Adv ; 3(3): 789-799, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36133838

RESUMEN

Water dynamics in inorganic nanotubes is studied by neutron scattering technique. Two types of aluminosilicate nanotubes are investigated: one is completely hydrophilic on the external and internal surfaces (IMO-OH) while the second possesses an internal cavity which is hydrophobic due to the replacement of Si-OH bonds by Si-CH3 ones (IMO-CH3), the external surface being still hydrophilic. The samples have internal radii equal to 7.5 and 9.8 Å, respectively. By working under well-defined relative humidity (RH) values, water dynamics in IMO-OH was revealed by quasi-elastic spectra as a function of the filling of the interior of the tubes. When one water monolayer is present on the inner surface of the tube, water molecules can jump between neighboring Si-OH sites on the circumference by 2.7 Å. A self-diffusion is then measured with a value (D = 1.4 × 10-5 cm2 s-1) around half of that in bulk water. When water molecules start filling also the interior of the tubes, a strong confinement effect is observed, with a confinement diameter (6 Å) of the same order of magnitude as the radius of the nanotube (7.5 Å). When IMO-OH is filled with water, the H-bond network is very rigid, and water molecules are immobile on the timescale of the experiment. For IMO-OH and IMO-CH3, motions of the hydroxyl groups are also evidenced. The associated relaxation time is of the order of 0.5 ps and is due to hindered rotations of these groups. In the case of IMO-CH3, quasi-elastic spectra and elastic scans are dominated by the motions of methyl groups, making the effect of the water content on the evolution of the signals negligible. It was however possible to describe torsions of methyl groups, with a corresponding rotational relaxation time of 2.6 ps. The understanding of the peculiar behavior of water inside inorganic nanotubes has implications in research areas such as nanoreactors. In particular, the locking of motions inside IMO-OH when it is filled with water prevents its use under these conditions as a nanoreactor, while the interior of the IMO-CH3 cavity is certainly a favorable place for confined chemical reactions to take place.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 040701, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18999369

RESUMEN

We analyze the molecular dynamics heterogeneity of the liquid crystal 4-n-octyl-4'-cyanobiphenyl nanoconfined in porous silicon. We show that the temperature dependence of the dynamic correlation length xi_(wall) , which measures the distance over which a memory of the interfacial slowing down of the molecular dynamics persists, is closely related to the growth of the short-range static order arising from quenched random fields. More generally, this result may also shed some light on the connection between static and dynamic heterogeneities in a wide class of condensed and soft matter systems.

15.
J Magn Reson ; 277: 25-29, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28213048

RESUMEN

Many single-sided permanent magnet NMR systems have been proposed over the years allowing for 1D proton-density profiling, diffusion measurements and relaxometry. In this manuscript we make use of a recently published unilateral magnet for low-field NMR exhibiting an extremely uniform magnetic field gradient with moderate strength and cylindrical symmetry, allowing for a well-defined sweet spot. Combined with a goniometer, our system is used to characterize precisely the uniformity of its gradient and to achieve micrometric precision 1D profiling, as well as spatially localized relaxometry and diffusometry on thick (∼150µm) membrane samples. Profiling with this magnet did not require repositioning of the samples with respect to the 1D tomograph.

16.
Nanoscale ; 9(5): 1901-1908, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28094396

RESUMEN

When probed at the macroscopic scale, Ionic Liquids (ILs) behave as highly dissociated (i.e. strong) electrolytes while, at the molecular scale, they show clear characteristics of weak ionic solutions. The multi-scale analysis we report in this paper reconciles these apparently at odds behaviors. We investigate by quasi-elastic neutron scattering (QENS) and neutron spin-echo (NSE), the nanometer/nanosecond dynamics of OMIM-BF4, an imidazolium-based IL showing strong nanostructuration. We also probe the same IL on the microscopic (µm and ms) scale by pulsed field gradient NMR. To interpret the neutron data, we introduce a new physical model to account for the dynamics of the side-chains and for the diffusion of the whole molecule. This model describes the observables over the whole and unprecedented investigated spatial ([0.15-1.65] Å-1) and time ([0.5-2000] ps) ranges. We arrive at a coherent and unified structural/dynamical description of the local cation dynamics: a localized motion within the IL nanometric domains is combined with a genuine long-range translational motion. The QENS, NSE and NMR experiments describe the same long-range translational process, but probed at different scales. The associated diffusion coefficients are more than one order of magnitude different. We show how this apparent discrepancy is a manifestation of the IL nanostructuration.

17.
Sci Rep ; 7(1): 2241, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28533551

RESUMEN

Ionic Liquids (ILs) are a specific class of molecular electrolytes characterized by the total absence of co-solvent. Due to their remarkable chemical and electrochemical stability, they are prime candidates for the development of safe and sustainable energy storage systems. The competition between electrostatic and van der Waals interactions leads to a property original for pure liquids: they self-organize in fluctuating nanometric aggregates. So far, this transient structuration has escaped to direct clear-cut experimental assessment. Here, we focus on a imidazolium based IL and use particle-probe rheology to (i) catch this phenomenon and (ii) highlight an unexpected consequence: the self-diffusion coefficient of the cation shows a one order of magnitude difference depending whether it is inferred at the nanometric or at the microscopic scale. As this quantity partly drives the ionic conductivity, such a peculiar property represents a strong limiting factor to the performances of ILs-based batteries.

18.
Rev Sci Instrum ; 87(9): 094903, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27782535

RESUMEN

Nanometric confinement of fluids in porous media is a classical way to stabilize metastable states. Calorimetric studies give insight on the behavior of confined liquids compared to bulk liquids. We have developed and built a simple quasi-adiabatic AC calorimeter for heat capacity measurement of confined liquids in porous media in a temperature range between 150 K and 360 K. Taking the fully hydrated porous medium as a reference, we address the thermal behavior of water as a monolayer on the surface of a porous silica glass (Vycor). For temperature ranging between 160 K and 325 K, this interfacial water shows a surprisingly large heat capacity. We describe the interfacial Hbond network in the framework of a mean field percolation model, to show that at 160 K interfacial water experiences a transformation from low density amorphous ice to a heterogeneous system where transient low and high density water patches coexist. The fraction of each species is controlled by the temperature. We identify the large entropy of the interfacial water molecules as the cause of this behaviour.

19.
Sci Rep ; 6: 25938, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27185018

RESUMEN

The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 1): 060801, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20866370

RESUMEN

We address the dynamical behavior of a single polymer chain under nanometric confinement. We show how neutron spin-echo, combined with contrast matching and zero average contrast, makes it possible to, all at once, (i) match the intense porous detrimental elastic small angle neutron scattering contribution to the total intermediate scattering function I(Q,t) and (ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The method presented here has a general relevance when probing the large scale dynamics of a system of large molecular mass under confinement.


Asunto(s)
Biofisica/métodos , Polímeros/química , Microscopía Electrónica de Rastreo/métodos , Nanotecnología/métodos , Neutrones , Polietilenglicoles/química , Porosidad , Reología , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA