RESUMEN
In this paper, we present various optical metamaterial nanoabsorbers with the aim of improving the refractive index sensitivity using the Fano response. The proposed absorbers consist of various parasitic elements such as single cross, broken cross, Jerusalem cross, and also single L and double L models. We numerically study their absorption and reflection using the three-dimensional finite-difference time-domain method and calculate the sensitivity and figure of merit (FOM) in every absorption peak (reflection dip). Our simulations reveal that the Fano resonance at longer wavelengths can be used for increasing the sensitivity and FOM. The proposed absorbers have been coated with an external material with a maximum thickness of 100 nm and refractive indices in the range of 1.05-1.2. We also study and compare the FOM for these structures. They are modified for 900 and 1200-1300 nm. The maximum FOM is achieved around 2400 RIU-1 for the double L nanoabsorber coated with 1.05 indexed material, while its sensitivity is 473 nm/RIU. This absorber is an appropriate component for the design of highly sensitive optical sensors.
RESUMEN
Optical biosensors based on plasmonic nanostructures have attracted great interest due to their ability to detect small refractive index changes with high sensitivity. In this work, a novel plasmonic coupled cavity waveguide is proposed for refractive index sensing applications. The structure consists of a metal-insulator-metal waveguide side coupled to an array of asymmetric H-shape element, designed to provide dual-band resonances. The sharp transmission dips and large field enhancements associated with dual-band resonances can enable sensitive detection of material under test. The resonator array creates a slow light effect to improve light-matter interactions. The structure was simulated using the finite integration technique as the full-wave technique, and the sensitivity and figure of merit were extracted for different ambient refractive indices. The maximum sensitivity of 1774 nm/RIU and high figure of merit of 2 × 104 RIU-1 for the basic model and 1.15 × 105 RIU-1 for the modified model were achieved, demonstrating the potential for high-performance sensing. The unique transmission characteristics also allow for combined spectral shaping and detection over a broad bandwidth. The simple, compact geometry makes the design suitable for on-chip integration. This work demonstrates a promising refractive index sensor based on coupled dual-band resonators in a plasmonic waveguide.