Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Comput Chem ; 42(11): 740-745, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33583083

RESUMEN

This study aims to apply artificial neural networks for the prediction of the lattice parameters of materials with stannite- and kesterite-type structure, and to compare the results of predictions with that obtained in the calculations exploiting the density functional theory. Crystallographic data for 49 compounds with stannite-type structure and for four compounds with the kesterite-type structure are found and, based on it, crystal structures are calculated using the density functional theory (DFT) method in a two-step relaxation procedure for all compounds. An multilayer Perceptron is constructed, which then is trained on gathered crystallographic data. Values predicted by a neural network (lattice parameters) are compared with experimental data and with results of DFT calculations. Moreover, a global optimization method (the Uspex code) is used to find potentially novel crystal structures for investigated chemical compositions. The results are discussed in the term of advantages and disadvantages of each method.

2.
Materials (Basel) ; 14(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832492

RESUMEN

Titanium nitride is a well-known conductive ceramic material that has recently experienced resumed attention because of its plasmonic properties comparable to metallic gold and silver. Thus, TiN is an attractive alternative for modern and future photonic applications that require compatibility with the Complementary Metal-Oxide-Semiconductor (CMOS) technology or improved resistance to temperatures or radiation. This work demonstrates that polycrystalline TiNx films sputtered on silicon at room temperature can exhibit plasmonic properties continuously from 400 nm up to 30 µm. The films' composition, expressed as nitrogen to titanium ratio x and determined in the Secondary Ion Mass Spectroscopy (SIMS) experiment to be in the range of 0.84 to 1.21, is essential for optimizing the plasmonic properties. In the visible range, the dielectric function renders the interband optical transitions. For wavelengths longer than 800 nm, the optical properties of TiNx are well described by the Drude model modified by an additional Lorentz term, which has to be included for part of the samples. The ab initio calculations support the experimental results both in the visible and infra-red ranges; particularly, the existence of a very low energy optical transition is predicted. Some other minor features in the dielectric function observed for the longest wavelengths are suspected to be of phonon origin.

3.
ACS Nano ; 14(7): 8473-8484, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32584543

RESUMEN

Material growth by van der Waals epitaxy has the potential to isolate monolayer (ML) materials and synthesize ultrathin films not easily prepared by exfoliation or other growth methods. Here, the synthesis of the early transition metal (Ti, V, and Cr) tellurides by molecular beam epitaxy (MBE) in the mono- to few-layer regime is investigated. The layered ditellurides of these materials are known for their intriguing quantum- and layer dependent- properties. Here we show by a combination of in situ sample characterization and comparison with computational predictions that ML ditellurides with octahedral 1T structure are readily grown, but for multilayers, the transition metal dichalcogenide (TMDC) formation competes with self-intercalated compounds. CrTe2, a TMDC that is known to be metastable in bulk and easily decomposes into intercalation compounds, has been synthesized successfully in the ML regime at low growth temperatures. At elevated growth temperatures or for multilayers, only the intercalation compound, equivalent to a bulk Cr3Te4, could be obtained. ML VTe2 is more stable and can be synthesized at higher growth temperatures in the ML regime, but multilayers also convert to a bulk-equivalent V3Te4 compound. TiTe2 is the most stable of the TMDCs studied; nevertheless, a detailed analysis of multilayers also indicates the presence of intercalated metals. Computation suggests that the intercalation-induced distortion of the TMDC-layers is much reduced in Ti-telluride compared to V-, and Cr-telluride. This makes the identification of intercalated materials by scanning tunneling microscopy more challenging for Ti-telluride. The identification of self-intercalation compounds in MBE grown multilayer chalcogenides may explain observed lattice distortions in previously reported MBE grown early transition metal chalcogenides. On the other hand, these intercalation compounds in their ultrathin limit can be considered van der Waals materials in their own right. This class of materials is only accessible by direct growth methods but may be used as "building blocks" in MBE-grown van der Waals heterostructures. Controlling their growth is an important step for understanding and studying the properties of these materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA