Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Res ; 241: 117579, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944691

RESUMEN

A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Contaminantes Ambientales/metabolismo , Biodegradación Ambiental , Catálisis , Sustancias Peligrosas
2.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338454

RESUMEN

In the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained systems proved successful enzyme deposition on all the presented materials. The immobilization of horseradish peroxidase on all the tested supports occurred with an efficiency above 70%. However, for multi-walled carbon nanotubes and hybrids made of chitosan, magnetic nanoparticles, and selenium ions, it reached up to 90%. For these materials, the immobilization yield exceeded 80%, resulting in high amounts of immobilized enzymes. The produced system showed the same optimal pH and temperature conditions as free enzymes; however, over a wider range of conditions, the immobilized enzymes showed activity of over 50%. Finally, a reusability study and storage stability tests showed that horseradish peroxidase immobilized on a hybrid made of chitosan, magnetic nanoparticles, and selenium ions retained around 80% of its initial activity after 10 repeated catalytic cycles and after 20 days of storage. Of all the tested materials, the most favorable for immobilization was the above-mentioned chitosan-based hybrid material. The selenium additive present in the discussed material gives it supplementary properties that increase the immobilization yield of the enzyme and improve enzyme stability. The obtained results confirm the applicability of these nanomaterials as useful platforms for enzyme immobilization in the contemplation of the structural stability of an enzyme and the high catalytic activity of fabricated biocatalysts.


Asunto(s)
Quitosano , Nanotubos de Carbono , Selenio , Enzimas Inmovilizadas/química , Peroxidasa de Rábano Silvestre/química , Quitosano/química , Estabilidad de Enzimas , Iones , Concentración de Iones de Hidrógeno
3.
Bioorg Chem ; 123: 105781, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395447

RESUMEN

In this study, we present the concept of co-immobilization of xylose dehydrogenase and alcohol dehydrogenase from Saccharomyces cerevisiae on an XN45 nanofiltration membrane for application in the process of xylose bioconversion to xylonic acid with simultaneous cofactor regeneration and membrane separation of reaction products. During the research, the effectiveness of the co-immobilization of enzymes was confirmed, and changes in the properties of the membrane after the processes were determined. Using the obtained biocatalytic system it was possible to obtain 99% xylonic acid production efficiency under optimal conditions, which were 5 mM xylose, 5 mM formaldehyde, ratio of NAD+:NADH 1:1, and 60 min of reaction. Additionally, the co-immobilization of enzymes made it possible to improve stability of the co-immobilized enzymes and to carry out xylose conversion in six consecutive cycles and after 7 days of storage at 4 °C with over 90% efficiency. The presented data confirm the effectiveness of the co-immobilization, improvement of the stability and reusability of the biocatalysts, and show that the obtained enzymatic system is promising for use in xylose bioconversion and simultaneous regeneration of nicotinamide cofactor.


Asunto(s)
Alcohol Deshidrogenasa , Xilosa , Aldehído Reductasa , Biocatálisis , Regeneración
4.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430564

RESUMEN

The development of efficient strategies for wastewater treatment to remove micropollutants is of the highest importance. Hence, in this study, we presented a rapid approach to the production of biocatalytic membranes based on commercially available cellulose membrane and oxidoreductase enzymes including laccase, tyrosinase, and horseradish peroxidase. Effective enzyme deposition was confirmed based on Fourier transform infrared spectra, whereas results of spectrophotometric measurements showed that immobilization yield for all proposed systems exceeded 80% followed by over 80% activity recovery, with the highest values (over 90%) noticed for the membrane-laccase system. Further, storage stability and reusability of the immobilized enzyme were improved, reaching over 75% after, respectively, 20 days of storage, and 10 repeated biocatalytic cycles. The key stage of the study concerned the use of produced membranes for the removal of hematoporphyrin, (2,4-dichlorophenoxy)acetic acid (2,4-D), 17α-ethynylestradiol, tetracycline, tert-amyl alcohol (anesthetic drug), and ketoprofen methyl ester from real wastewater sampling at various places in the wastewater treatment plant. Although produced membranes showed mixed removal rates, all of the analyzed compounds were at least partially removed from the wastewater. Obtained data clearly showed, however, that composition of the wastewater matrix, type of pollutants as well as type of enzyme strongly affect the efficiency of enzymatic treatment of wastewater.


Asunto(s)
Aguas Residuales , Purificación del Agua , Lacasa/metabolismo , Purificación del Agua/métodos , Enzimas Inmovilizadas/metabolismo , Biocatálisis
5.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209143

RESUMEN

The occurrence of 17α-ethinylestradiol (EE2) in the environment and its removal have drawn special attention from the scientific community in recent years, due to its hazardous effects on human and wildlife around the world. Therefore, the aim of this study was to produce an efficient enzymatic system for the removal of EE2 from aqueous solutions. For the first time, commercial silica nanopowder and 3D fibrous chitinous scaffolds from Aplysina fistularis marine sponge were used as supports for horseradish peroxidase (HRP) immobilization. The effect of several process parameters onto the removal mechanism of EE2 by enzymatic conversion and adsorption of EE2 were investigated here, including system type, pH, temperature and concentrations of H2O2 and EE2. It was possible to fully remove EE2 from aqueous solutions using system SiO2(HRP)-chitin(HRP) over a wide investigated pH range (5-9) and temperature ranges (4-45 °C). Moreover, the most suitable process conditions have been determined at pH 7, temperature 25 °C and H2O2 and EE2 concentrations equaling 2 mM and 1 mg/L, respectively. As determined, it was possible to reuse the nanoSiO2(HRP)-chitin(HRP) system to obtain even 55% EE2 degradation efficiency after five consecutive catalytic cycles.


Asunto(s)
Quitina/química , Etinilestradiol/química , Peroxidasa de Rábano Silvestre/química , Nanopartículas/química , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química , Adsorción , Biocatálisis , Fenómenos Químicos , Enzimas Inmovilizadas , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas/ultraestructura , Análisis Espectral , Temperatura
6.
Bioorg Chem ; 114: 105036, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34120021

RESUMEN

Immobilized enzymes find applications in many areas such as pharmacy, medicine, food production and environmental protection. However, protecting these biocatalysts against harsh reaction conditions and retaining their enzymatic activity even after several biocatalytic cycles are major challenges. Properly selected supports and type of surface modifier therefore seem to be crucial for achieving high retention of catalytic activity of immobilized biomolecules. Here we propose production of novel composite electrospun fibers from polystyrene/poly(d,l-lactide-co-glycolide) (PS/PDLG) and its application as a support for immobilization of oxidoreductases such as alcohol dehydrogenase (ADH) and laccase (LAC). Two strategies of covalent binding, (i) (3-aminopropyl)triethoxysilane (APTES) with glutaraldehyde (GA) and (ii) polydopamine (PDA), were applied to attach oxidoreductases to PS/PDLG. The average fiber diameter was shown to increase from 1.252 µm to even 3.367 µm after enzyme immobilization. Effective production of PS/PDLG fibers and biomolecule attachment were confirmed by Fourier transform infrared spectroscopy analysis. The highest substrate conversion efficiency was observed at pH 6.5 and 5 for ADH and LAC, respectively, and at 25 °C for enzymes attached using the APTES + GA approach. Improvement of enzyme stabilization at high temperatures was confirmed in that relative activities of enzymes immobilized onto PS/PDLG fibers were over 20% higher than those of the free biomolecules, and enzyme leaching from the support using acetate and MES buffers was below 10 mg/g.


Asunto(s)
Enzimas Inmovilizadas/química , Oxidorreductasas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Poliestirenos/química , Benzotiazoles/química , Biocatálisis , Formaldehído/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Estabilidad Proteica , Ácidos Sulfónicos/química , Temperatura
7.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008696

RESUMEN

Enzymatic conversion of pharmaceutically active ingredients (API), using immobilized enzymes should be considered as a promising industrial tool due to improved reusability and stability of the biocatalysts at harsh process conditions. Therefore, in this study horseradish peroxidase was immobilized into sodium alginate capsules and then trapped into poly(vinyl chloride) electrospun fibers to provide additional enzyme stabilization and protection against the negative effect of harsh process conditions. Due to encapsulation immobilization, 100% of immobilization yield was achieved leading to loading of 25 µg of enzyme in 1 mg of the support. Immobilized in such a way, enzyme showed over 80% activity retention. Further, only slight changes in kinetic parameters of free (Km = 1.54 mM) and immobilized horseradish peroxidase (Km = 1.83 mM) were noticed, indicating retention of high catalytic properties and high substrate affinity by encapsulated biocatalyst. Encapsulated horseradish peroxidase was tested in biodegradation of two frequently occurring in wastewater API, sulfamethoxazole (antibiotic) and carbamazepine (anticonvulsant). Over 80% of both pharmaceutics was removed by immobilized enzyme after 24 h of the process from the solution at a concentration of 1 mg/L, under optimal conditions, which were found to be pH 7, temperature 25 °C and 2 mM of H2O2. However, even from 10 mg/L solutions, it was possible to remove over 40% of both pharmaceuticals. Finally, the reusability and storage stability study of immobilized horseradish peroxidase showed retention of over 60% of initial activity after 20 days of storage at 4 °C and after 10 repeated catalytic cycles, indicating great practical application potential. By contrast, the free enzyme showed less than 20% of its initial activity after 20 days of storage and exhibited no recycling potential.


Asunto(s)
Carbamazepina/aislamiento & purificación , Peroxidasa de Rábano Silvestre/metabolismo , Cloruro de Polivinilo/química , Sulfametoxazol/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Biocatálisis , Biodegradación Ambiental , Carbamazepina/química , Activación Enzimática , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Cinética , Sulfametoxazol/química
8.
Environ Res ; 184: 109332, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151845

RESUMEN

Novel electrospun poly(methyl methacrylate)/polyaniline electrospun fibres were produced, characterised, modified, and used as a support for laccase immobilisation by two methods: adsorption and covalent binding. Effective deposition of laccase by both methods was confirmed by FTIR and CLSM results. Nevertheless, the main objective of the study was to select the most favourable immobilisation conditions and prepare heterogeneous biocatalysts with the best possible catalytic properties. The highest relative activity of enzymes immobilised by adsorption and covalent binding were obtained after 1 h of immobilisation using laccase solution at a concentration of 1 mg/mL, at pH 5 and 25 °C. It was found that the immobilised enzymes, which were present in amounts of 110 mg/g and 185 mg/g for systems with adsorbed and covalently bonded laccase respectively, exhibited slightly lower substrate affinity, and in consequence also a lower maximum reaction rate, than the free enzyme. The stability of laccase improved significantly upon immobilisation: both heterogeneous biocatalysts retained over 80% relative activity even after 10 repeated catalytic cycles and 30 days of storage. The obtained systems were used for decolourisation of Remazol Brilliant Blue R dye from a model aqueous solution, resulting in removal efficiencies of 87% and 58% using adsorbed and covalently bonded laccase, respectively. The described approach to the removal of textile dye from model solution is significant for the sustainable and environmentally friendly decolourisation of various compounds from wastewater.


Asunto(s)
Colorantes , Lacasa , Polimetil Metacrilato , Purificación del Agua , Adsorción , Compuestos de Anilina
9.
Molecules ; 25(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287209

RESUMEN

One of the directions of development in the textiles industry is the search for new technologies for producing modern multifunctional products. New solutions are sought to obtain materials that will protect humans against the harmful effects of the environment, including such factors as the activity of microorganisms and UV radiation. Products made of natural cellulose fibers are often used. In the case of this type of material, it is very important to perform appropriate pretreatment before subsequent technological processes. This treatment has the aim of removing impurities from the surface of the fibers, which results in the improvement of sorption properties and adhesion, leading directly to the better penetration of dyes and chemical modifiers into the structure of the materials. In this work, linen fabrics were subjected to a new, innovative treatment being a combination of bio-pretreatment using laccase from Cerrena unicolor and modification with CuO-SiO2 hybrid oxide microparticles by a dip-coating method. To compare the effect of alkaline or enzymatic pretreatment on the microstructure of the linen woven fabrics, SEM analysis was performed. The new textile products obtained after this combined process exhibit very good antimicrobial activity against Candida albicans, significant antibacterial activity against the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus, as well as very good UV protection properties (ultraviolet protection factor (UPF) > 40). These innovative materials can be used especially for clothing or outdoor textiles for which resistance to microorganisms is required, as well as to protect people who are exposed to long-term, harmful effects of UV radiation.


Asunto(s)
Antiácidos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Ropa de Cama y Ropa Blanca , Colorantes/química , Polyporales/química , Dióxido de Silicio/química , Textiles , Rayos Ultravioleta
10.
Bioorg Chem ; 93: 102747, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30739714

RESUMEN

Enzymatic cofactor-dependent conversion of monosaccharides can be used in the bioproduction of value-added compounds. In this study, we demonstrate co-immobilization of xylose dehydrogenase (XDH, EC 1.1.1.175) and alcohol dehydrogenase (ADH, EC 1.1.1.1) using magnetite-silica core-shell particles for simultaneous conversion of xylose into xylonic acid (XA) and in situ cofactor regeneration. The reaction conditions were optimized by factorial design, and were found to be: XDH:ADH ratio 2:1, temperature 25 °C, pH 7, and process duration 60 min. Under these conditions enzymatic production of xylonic acid exceeded 4.1 mM and was more than 25% higher than in the case of a free enzymes system. Moreover, the pH and temperature tolerance as well as the thermo- and storage stability of the co-immobilized enzymes were significantly enhanced. Co-immobilized XDH and ADH make it possible to obtain higher xylonic acid concentration over broad ranges of pH (6-8) and temperature (15-35 °C) as compared to free enzymes, and retained over 60% of their initial activity after 20 days of storage. In addition, the half-life of the co-immobilized system was 4.5 times longer, and the inactivation constant (kD = 0.0141 1/min) four times smaller, than those of the free biocatalysts (kD = 0.0046 1/min). Furthermore, after five reaction cycles, immobilized XDH and ADH retained over 65% of their initial properties, with a final biocatalytic productivity of 1.65 mM of xylonic acid per 1 U of co-immobilized XDH. The results demonstrate the advantages of the use of co-immobilized enzymes over a free enzyme system in terms of enhanced activity and stability.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Coenzimas/metabolismo , Xilosa/análogos & derivados , Xilosa/metabolismo , Alcohol Deshidrogenasa/genética , Oxidorreductasas de Alcohol/química , Coenzimas/química , Enzimas Inmovilizadas , Concentración de Iones de Hidrógeno , Temperatura , Xilosa/química
11.
J Environ Manage ; 204(Pt 1): 123-135, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28865307

RESUMEN

A comparative analysis was performed concerning the removal of two different organic dyes from model aqueous solution using an inorganic oxide adsorbent. The key element of the study concerns evaluation of the influence of the dyes' structure and their acid-base character on the efficiency of the adsorption process. The selection of sorbent material for this research - an MgO-SiO2 oxide system synthesized via a modified sol-gel route - is also not without significance. The relatively high porous structure parameters of this material (ABET = 642 m2/g, Vp = 1.11 mL and Sp = 9.8 nm) are a result of the proposed methodology for its synthesis. Both organic dyes (C.I. Acid Blue 29 and C.I. Basic Blue 9) were subjected to typical batch adsorption tests, including investigation of such process parameters as time, initial adsorbate concentration, adsorbent dose, pH and temperature. An attempt was also made to estimate the sorption capacity of the oxide material with respect to the analyzed organic dyes. To achieve the objectives of the research - determine the efficiency of adsorption - it was important to perform a thorough physicochemical analysis of the adsorbents (e.g. FTIR, elemental analysis and porous structure parameters). The results confirmed the significantly higher affinity of the basic dye to the oxide adsorbents compared with the acidic dye. The regeneration tests, which indirectly determine the nature of the adsorbent/adsorbate interactions, provide further evidence for this finding. On this basis, a probable mechanism of dyes adsorption on the MgO-SiO2 oxide adsorbent was proposed.


Asunto(s)
Compuestos Azo/química , Azul de Metileno/química , Naftalenos/química , Óxidos/química , Tiazinas/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Colorantes/química , Cinética , Temperatura , Agua
12.
Int J Mol Sci ; 17(9)2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27657054

RESUMEN

A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB). Fourier transform infrared spectroscopy (FTIR) confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS) + CALB after 24 h of the immobilization), as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30-60 °C) and pH (6-9). Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME) and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS) was used as a chitin-modifying agent.

13.
Int J Mol Sci ; 17(10)2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27690001

RESUMEN

In this study, Hippospongia communis marine demosponge skeleton was used as an adsorbent for sodium copper chlorophyllin (SCC). Obtained results indicate the high sorption capacity of this biomaterial with respect to SCC. Batch experiments were performed under different conditions and kinetic and isotherms properties were investigated. Acidic pH and the addition of sodium chloride increased SCC adsorption. The experimental data were well described by a pseudo-second order kinetic model. Equilibrium adsorption isotherms were determined and the experimental data were analyzed using both Langmuir and Freundlich isotherms. The effectiveness of the process was confirmed by 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (13C CP/MAS NMR), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TG). This novel SCC-sponge-based functional hybrid material was found to exhibit antimicrobial activity against the gram-positive bacterium Staphylococcus aureus.

14.
Mar Drugs ; 13(4): 2424-46, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25903282

RESUMEN

Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.


Asunto(s)
Aspergillus niger/enzimología , Quitina/química , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/química , Lipasa/metabolismo , Técnicas Biosensibles , Fenómenos Químicos , Restauración y Remediación Ambiental , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Lipasa/química , Ensayo de Materiales , Resonancia Magnética Nuclear Biomolecular , Palmitatos/metabolismo , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Calidad del Agua
15.
Chemosphere ; 358: 142101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653395

RESUMEN

Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Restauración y Remediación Ambiental/métodos , Suelo/química , Adsorción
16.
Environ Pollut ; : 124348, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936790

RESUMEN

Organochlorides and particularly chlorophenols are environmental pollutants that deserve special attention. Enzymatic membrane bioreactors may be alternatives for efficiently removing such hazardous organochlorides from aqueous solutions. We propose here a novel enzymatic membrane bioreactor comprising an ultrafiltration membrane GR81PP, electrospun fibers made of cellulose acetate, and laccase immobilized using an incubation and a fouling approach. Configurations of this biosystem exhibiting the highest catalytic activity were selected for removal of 2-chlorophenol and 4-chlorophenol from aqueous solution in an enzymatic membrane bioreactor under various process conditions. The highest removal of chlorophenols, at 88% and 74% for 2-chlorophenol and 4-chlorophenol, respectively, occurred at pH 5 and 30 ºC in the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method. Furthermore, the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method exhibited significant reusability and storage stability compared with the biosystem with laccase immobilized by the incubation method. The mechanism of enzyme immobilization is based on pore blocking and cake-layer formation, while the mechanism of chlorophenols removal was identified as a synergistic combination of membrane separation and enzymatic conversion. The importance of the conducted research is due to efficient removal of hazardous organochlorides using a novel enzymatic membrane bioreactor. The study demonstrates the biosystem's high catalytic activity, reusability, and stability, offering a promising solution for environmental pollution control.

17.
Comput Struct Biotechnol J ; 21: 1593-1597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874162

RESUMEN

Due to the growing importance of synthesizing active pharmaceutical ingredients (APIs) in enantiomerically pure form, new methods of asymmetric synthesis are being sought. Biocatalysis is a promising technique that can lead to enantiomerically pure products. In this study, lipase from Pseudomonas fluorescens, immobilized on modified silica nanoparticles, was used for the kinetic resolution (via transesterification) of a racemic mixture of 3-hydroxy-3-phenylpropanonitrile (3H3P), where the obtaining of a pure (S)-enantiomer of 3H3P is a crucial step in the fluoxetine synthesis pathway. For additional stabilization of the enzyme and enhanced process efficiency, ionic liquids (ILs) were used. It was found that the most suitable IL was [BMIM]Cl; a process efficiency of 97.4 % and an enantiomeric excess (ee%) of 79.5 % were obtained when 1 % (w/v) of that IL in hexane was applied and the process was catalyzed by lipase immobilized on amine-modified silica.

18.
Int J Biol Macromol ; 234: 123531, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36754266

RESUMEN

With robust catalytic features, manganese peroxidases (MnPs) from various sources, including fungi and bacteria, have gained much consideration in many biotechnological applications with particular emphasis on environmental remediation. MnP is a heme-containing enzyme that belongs to the oxidoreductases that can catalyze the degradation of various organic pollutants, such as chlorophenols, nitroaromatic compounds, industrial dyes, and polycyclic aromatic hydrocarbons. To spotlight the MnP as biocatalytic tool, an effort has been put forward to cover the four major compartments. For instance, following a brief introduction, first, various microbial sources of MnP are discussed with examples. Second, structural attributes and biocatalytic features of MnP are given with examples. Third, different MnP immobilization strategies, including adsorption, covalent linking, entrapment, and cross-linking, are discussed with a significant motive to strengthen the enzyme's stability against diverse deactivation agents by restricting the conformational mobility of molecules. Compared to free counterparts, immobilized MnP fractions perform well in hostile environments. Finally, various biotechnological applications, such as fuel ethanol production, de-lignification, textile industry, pulp and paper industry, degradation of phenolic and non-phenolic compounds, and pharmaceutical and pesticide degradation, are briefly discussed.


Asunto(s)
Enzimas Inmovilizadas , Manganeso , Manganeso/metabolismo , Enzimas Inmovilizadas/química , Peroxidasas/metabolismo , Biotecnología , Hongos/metabolismo
19.
Sci Total Environ ; 868: 161630, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36657682

RESUMEN

Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.


Asunto(s)
Coenzimas , Niacinamida , Coenzimas/química , Enzimas Inmovilizadas/metabolismo , Biocatálisis , Adenosina Trifosfato
20.
Bioresour Technol ; 381: 129144, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37172744

RESUMEN

This study reports a biocatalytic system of immobilized laccase and 3D printed open-structure biopolymer scaffoldings. The scaffoldings were computer-designed and 3D printed using polylactide (PLA) filament. The immobilization of laccase onto the 3D printed PLA scaffolds were optimized with regard to pH, enzyme concentration, and immobilization time. Laccase immobilization resulted in a small reduction in reactivity (in terms of Michaelis constant and maximum reaction rate) but led to significant improvement in chemical and thermal stability. After 20 days of storage, the immobilized and free laccase showed 80% and 35% retention of the initial enzymatic activity, respectively. The immobilized laccase on 3D printed PLA scaffolds achieved 10% improvement in the removal of estrogens from real wastewater as compared to free laccase and showed the significant reusability potential. Results here are promising but also highlight the need for further study to improve enzymatic activity and reusability.


Asunto(s)
Enzimas Inmovilizadas , Aguas Residuales , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Lacasa/metabolismo , Poliésteres , Impresión Tridimensional , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA