Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Protein Expr Purif ; 179: 105796, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33221505

RESUMEN

TREM2 has been identified by genomic analysis as a potential and novel target for the treatment of Alzheimer's disease. To enable structure-based screening of potential small molecule therapeutics, we sought to develop a robust crystallization platform for the TREM2 Ig-like domain. A systematic set of constructs containing the structural chaperone, maltose binding protein (MBP), fused to the Ig domain of TREM2, were evaluated in parallel expression and purification, followed by crystallization studies. Using protein crystallization and high-resolution diffraction as a readout, a MBP-TREM2 Ig fusion construct was identified that generates reproducible protein crystals diffracting at 2.0 Å, which makes it suitable for soaking of potential ligands. Importantly, analysis of crystal packing interfaces indicates that most of the surface of the TREM2 Ig domain is available for small molecule binding. A proof of concept co-crystallization study with a small library of fragments validated potential utility of this system for the discovery of new TREM2 therapeutics.


Asunto(s)
Cristalización/métodos , Glicoproteínas de Membrana , Chaperonas Moleculares , Receptores Inmunológicos , Proteínas Recombinantes de Fusión , Humanos , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
2.
Nature ; 519(7542): 187-192, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25731175

RESUMEN

Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.


Asunto(s)
Carboxilesterasa/metabolismo , Proteínas de Drosophila/metabolismo , Esterasas/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Acilación , Animales , Sitios de Unión , Carboxilesterasa/química , Proteínas de Drosophila/química , Esterasas/química , Esterasas/genética , Ácidos Grasos Monoinsaturados/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glipicanos/metabolismo , Humanos , Cinética , Ligandos , Espectrometría de Masas , Modelos Moleculares , Unión Proteica
3.
J Struct Biol ; 191(2): 149-55, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26123262

RESUMEN

The four secreted R-spondin (Rspo1-4) proteins of vertebrates function as stem cell growth factors and potentiate canonical Wnt signalling. Rspo proteins act by cross-linking members of two cell surface receptor families, complexing the stem cell markers LGR4-6 with the Frizzled-specific E3 ubiquitin ligases ZNRF3/RNF43. The consequent internalisation of the ternary LGR-Rspo-E3 complex removes the E3 ligase activity, which otherwise targets the Wnt receptor Frizzled for degradation, and thus enhances Wnt signalling. Multiple combinations of LGR4-6, Rspo1-4 and ZNRF3/RNF43 are possible, implying the existence of generic interaction determinants, but also of specific differences in complex architecture and activity. We present here a high resolution crystal structure of an ectodomain variant of human LGR5 (hLGR5ecto) complexed with a signalling competent fragment of mouse Rspo2 (mRspo2Fu1-Fu2). The structure shows that the particularly potent Rspo2 ligand engages LGR5 in a fashion almost identical to that reported for hRSPO1. Comparison of our hLGR5ecto structure with previously published structures highlights a surprising plasticity of the LGR ectodomains, characterised by a nearly 9° or larger rotation of the N-terminal half of the horseshoe-like fold relative to the C-terminal half. We also report a low resolution hLGR5-mRspo2Fu1-Fu2-mZNRF3ecto ternary complex structure. This crystal structure confirms our previously suggested hypothesis, showing that Rspo proteins cross-link LGRs and ZNRF3 into a 2:2:2 complex, whereas a 1:1:1 complex is formed with RNF43.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Trombospondinas/química , Ubiquitina-Proteína Ligasas/química , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína
4.
J Struct Biol ; 185(3): 336-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24462745

RESUMEN

In many vertebrate tissues CD39-like ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) act in concert with ecto-5'-nucleotidase (e5NT, CD73) to convert extracellular ATP to adenosine. Extracellular ATP is a cytotoxic, pro-inflammatory signalling molecule whereas its product adenosine constitutes a universal and potent immune suppressor. Interference with these ectonucleotidases by use of small molecule inhibitors or inhibitory antibodies appears to be an effective strategy to enhance anti-tumour immunity and suppress neoangiogenesis. Here we present the first crystal structures of an NTPDase catalytic ectodomain in complex with the Reactive Blue 2 (RB2)-derived inhibitor PSB-071. In both of the two crystal forms presented the inhibitor binds as a sandwich of two molecules at the nucleoside binding site. One of the molecules is well defined in its orientation. Specific hydrogen bonds are formed between the sulfonyl group and the nucleoside binding loop. The methylphenyl side chain functionality that improved NTPDase2-specificity is sandwiched between R245 and R394, the latter of which is exclusively found in NTPDase2. The second molecule exhibits great in-plane rotational freedom and could not be modelled in a specific orientation. In addition to this structural insight into NTPDase inhibition, the observation of the putative membrane interaction loop (MIL) in two different conformations related by a 10° rotation identifies the MIL as a dynamic section of NTPDases that is potentially involved in regulation of catalysis.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Antraquinonas/química , Triazinas/química
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1147-54, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699658

RESUMEN

Nucleoside triphosphate diphosphohydrolases (NTPDases) are secreted or membrane-bound ectonucleotidases that hydrolyze the anhydride bonds of nucleoside triphosphates and nucleoside diphosphates. Mammalian cell-surface NTPDase enzymes are inhibited by various polyoxometallates. Here, the structures of NTPDase1 from the bacterium Legionella pneumophila (LpNTPDase1) in complex with the dodecatungstate POM-1, decavanadate and octamolybdate/heptamolybdate are described. The metal clusters are bound at different sites but always in a highly ordered fashion via electrostatic interactions and hydrogen bonds. For octamolybdate, covalent interactions after oxygen ligand exchange by a serine and histidine side chain are also observed. The potential inhibitory mechanism and the use of the metal clusters as phasing tools for new NTPDase structures are discussed. The binding mode of a tartrate ion at the catalytic centre suggests novel strategies for the structure-based design of NTPDase inhibitors, and the observation of the enzyme in an intermediate open state contributes to our understanding of NTPDase enzyme dynamics.


Asunto(s)
Antígenos CD/química , Apirasa/química , Legionella pneumophila/enzimología , Compuestos de Tungsteno/química , Antígenos CD/metabolismo , Apirasa/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Compuestos de Tungsteno/metabolismo
6.
J Med Chem ; 67(18): 16807-16819, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39231262

RESUMEN

Inhibition of leucine-rich repeat kinase 2 is a genetically supported mechanism for the treatment of Parkinson's disease. We previously disclosed the discovery of an indazole series lead that demonstrated both safety and translational risks. The safety risks were hypothesized to be of unknown origin, so structural diversity in subsequent chemical matter was prioritized. The translational risks were identified due to a low brain Kpu,u in nonhuman primate studies, which raised concern over the use of an established peripheral biomarker as a surrogate for central target engagement. Given these challenges, the team sought to leverage structure- and property-based drug design and expanded efflux transporter profiling to identify structurally distinct leads with enhanced CNS drug-likeness. Herein, we describe the discovery of a "reinvented" indazole series with improved physicochemical properties and efflux transporter profiles while maintaining excellent potency and off-target kinase selectivity, which resulted in advanced lead, compound 23.


Asunto(s)
Indazoles , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Inhibidores de Proteínas Quinasas , Indazoles/farmacología , Indazoles/química , Indazoles/síntesis química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Animales , Relación Estructura-Actividad , Descubrimiento de Drogas , Ratas , Estructura Molecular
7.
J Biol Chem ; 287(5): 3051-66, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22130673

RESUMEN

The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258-268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys(258)-Cys(268) show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg(2+) to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg(492) and Glu(493) in NTPDase1 by glycines in NTPDase3.


Asunto(s)
Disulfuros/química , Proteínas Protozoarias/química , Pirofosfatasas/química , Toxoplasma/enzimología , Adenosina Difosfato/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Disulfuros/metabolismo , Activación Enzimática/fisiología , Mutación Missense , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Relación Estructura-Actividad , Toxoplasma/genética
8.
Chembiochem ; 14(17): 2292-300, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24115522

RESUMEN

Two nucleoside triphosphate diphosphohydrolase isoforms (NTPDase1 and NTPDase3) are responsible for the hydrolysis of nucleotides by the intracellular protozoan Toxoplasma gondii. They constitute about 3 % of the total parasite protein. Despite sharing 97 % sequence identity they exhibit opposite ATP versus ADP substrate discrimination ratios. Here we show by mutagenesis that the residues G492/G493 in NTPDase3 and R492/E493 in NTPDase1 are predominantly responsible for the differences in substrate specificity. Crystal structures of NTPDase1 in complexation with analogues of ATP and ADP reveal that the inverted substrate specificity of NTPDase1 relative to NTPDase3 is achieved by switching from the canonical substrate binding mode to a very different alternative one. Instead of being stacked on top of a helix of the C-terminal domain the nucleotide base is positioned in the interdomain space between the side chains of R108 and R492, recruited from both domains. Furthermore, we show that the NTPDase1 substrate specificity is mainly dependent on the presence of the side chain of E493, which causes repositioning of the ribose component of the nucleotide. All in all, binding by the flexible side chains in the alternative binding mode in NTPDase1 allows for equally good positioning of ATP and ADP with increased activity toward ADP relative to what is seen in the case of NTPDase3.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Pirofosfatasas/metabolismo , Toxoplasma/enzimología , Adenosina Difosfato/química , Adenosina Trifosfato/química , Antígenos CD/química , Antígenos CD/genética , Apirasa/química , Apirasa/genética , Sitios de Unión , Modelos Moleculares , Pirofosfatasas/química , Pirofosfatasas/genética , Especificidad por Sustrato
9.
Artículo en Inglés | MEDLINE | ID: mdl-23519799

RESUMEN

Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/ß)- and (ß/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map.


Asunto(s)
Antígenos CD/química , Apirasa/química , Proteínas Bacterianas/química , Legionella pneumophila/química , Secuencia de Aminoácidos , Antígenos CD/genética , Apirasa/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Legionella pneumophila/enzimología , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Commun Biol ; 6(1): 798, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524852

RESUMEN

cGMP-dependent protein kinase I-α (PKG1α) is a target for pulmonary arterial hypertension due to its role in the regulation of smooth muscle function. While most work has focused on regulation of cGMP turnover, we recently described several small molecule tool compounds which were capable of activating PKG1α via a cGMP independent pathway. Selected molecules were crystallized in the presence of PKG1α and were found to bind to an allosteric site proximal to the low-affinity nucleotide binding domain. These molecules act to displace the switch helix and cause activation of PKG1α representing a new mechanism for the activation and control of this critical therapeutic path. The described structures are vital to understanding the function and control of this key regulatory pathway.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA