Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plants (Basel) ; 12(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37631214

RESUMEN

The bryophyte flora of Vienna is documented only in parts. Old finds often appeared in publications about Lower Austria; only one study addressed the bryophytes of the inner city. Here, we present a bryophyte flora of Vienna, including historical reports and the results of recent investigations. From 1998 to 2023, we recorded 329 bryophyte taxa in Viennese urban territory. Fifty-six of these were liverworts, and 273 were mosses. Sixty-seven taxa are new for Vienna. Forty-nine taxa, given in historical studies, could no longer be found. If we also count these, 378 taxa occurred in Vienna to date. Of the current occurring bryophytes, 67 species have an endangerment classification. Rich in bryophytes were the dry grasslands of the Lobau, the oxbow lakes of the Lobau and the Prater, and large parts of the Wienerwald. But flat roofs and inner-city areas also showed more than 100 species. Compared to other European cities, Vienna is decidedly species-rich and highly responsible for some species in Austria. Reasons for this are the extensive green spaces and the pronounced climatic gradient from the sub-oceanic west to the sub-continental east of Vienna. Awareness raising for bryophytes we recommend in addition to the existing biotope protection.

2.
Plants (Basel) ; 12(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570907

RESUMEN

Scapania apiculata, Scapania carinthiaca, and Scapania scapanioides are rare deadwood-dwelling liverworts threatened across Europe. Scapania carinthiaca is thus listed in the Habitats Directive. However, their distribution data are scattered, and their ecologic demands are insufficiently studied. Here, we present new locations and data on the ecology of the species, which resulted from a targeted search in selected regions of Austria. We found ten new sites each for Scapania apiculata and Scapania scapanioides and twenty for Scapania carinthiaca. Reproduction was exclusively asexual. The macroclimates of all known locations in Austria did not differ significantly between the three species. It was consistently wet, with a mean annual precipitation of 1615.3 mm, a high evenness of rainfall, and a low desiccation risk. The mean temperature averaged 7.4 °C. The habitat was shaded dead wood of Picea abies, Abies alba, and Fagus sylvatica of all decay stages at a median distance of 2.5 m from streams or springy areas in semi-natural forests of montane and submontane regions. Thus, high deadwood volumes under a suitable climate are a prerequisite for the occurrences of the species. The number of locations of new finds has more than doubled in Austria and thus in Europe.

3.
Plants (Basel) ; 10(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396661

RESUMEN

Deadwood is a biodiversity hotspot and habitat for numerous highly endangered species. Buxbaumia viridis has been assessed as a flagship species for deadwood-rich forests and is subject to monitoring under the Habitats Directive, yet we lack a solid understanding of the factors controlling its distribution. The study aimed to specify the climate and habitat preferences of Buxbaumia viridis and identify the best predictor variables. We collected presence-absence data of the species at 201 sites between 2016 and 2020. Study sites cover three biogeographic regions (Pannonian, Continental, and Alpine). They also represent a deadwood gradient ranging from managed forests to natural forest reserves and virgin forests. Our results suggest that desiccation and deadwood amount are the best predictor variables. The amount of deadwood at the colonized sites ranged from 1 m3/ha to 288 m3/ha, with a median of 70 m3/ha. The maximum desiccation, i.e., consecutive days without rain and at least 20 °C was 9.6 days at colonized sites. The results of logistic regression models suggest that desiccation limits Buxbaumia viridis occurrence on deadwood in the drier continental parts of eastern Austria. Derived details on climate and habitat requirements of Buxbaumia viridis can specify management and conservation. They clearly show how strongly the species is dependent on climate, which can counteract deadwood measures.

4.
Plants (Basel) ; 9(10)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036245

RESUMEN

Knowledge about the epixylic moss Buxbaumia viridis has increased significantly due to the monitoring obligation under the Habitats Directive. However, there are still open questions about its dispersal, as the wind plays a limited role in forest ecosystems, and vectors have been suspected but not yet studied systematically for this species. Here, we present data on potential vectors of Buxbaumia viridis collected for the first time with the help of cameras, completed by monitoring the fate of sporophytes during their life cycle in the Limestone Alps National Park in Austria over a period of two years. Young, green sporophytes appeared mainly in autumn, with the highest number in October. Most of them survived winter and spring but did not exceed the age of 14 months. The sharpest decline in capsules occurred in summer when mature, and the lowest number of sporophytes appeared at the end of August. Most likely, mice seem to be responsible for this loss, as the photos from the wildlife cameras suggest, and should be considered both as predators and vectors. Birds should be considered as vectors, too. In summary, most of the reproductive biomass is sacrificed in favor of more effective dispersal, including over longer distances.

5.
Environ Pollut ; 151(2): 377-88, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17673343

RESUMEN

This study aimed at cross-border mapping metal loads in mosses in eight European countries in 1990, 1995, and 2000 and at investigating confounding factors. Geostatistics was used for mapping, indicating high local variances but clear spatial autocorrelations. Inference statistics identified differences of metal concentrations in mosses on both sides of the national borders. However, geostatistical analyses did not ascertain discontinuities of metal concentrations in mosses at national borders due to sample analysis in different laboratories applying a range of analytical techniques. Applying Classification and Regression Trees (CART) to the German moss data as an example, the local variation in metal concentrations in mosses were proved to depend mostly on different moss species, potential local emission sources, canopy drip and precipitation.


Asunto(s)
Briófitas/metabolismo , Contaminantes Ambientales/metabolismo , Metales/metabolismo , Altitud , Briófitas/química , Factores de Confusión Epidemiológicos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Europa (Continente) , Sistemas de Información Geográfica , Laboratorios , Metales/análisis , Modelos Estadísticos , Océanos y Mares , Lluvia , Especificidad de la Especie
6.
Insects ; 9(3)2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-29986522

RESUMEN

We assessed the relationships between site size, habitat quality, landscape factors (fragmentation, landscape diversity) and species richness in communities of Collembola in 50 small dry grassland habitat patches in an agricultural landscape of eastern Austria. Grasslands in that region were once widespread and extensive, but have become increasingly fragmented and isolated. We hypothesized that dry grassland springtails species richness is significantly correlated with site variables (soil properties, habitat quality) and that the size of grassland sites is positively correlated with species richness. We used pitfall traps in 50 dry grasslands in differently structured agricultural landscapes and tested total abundance and three species richness measures: (1) the number of dry grassland specialist species, (2) total number of dry grassland species and (3) overall species richness. In the multivariate correlation models, we found that all species richness measures were significantly related to the plant species richness, a shape parameter of the sites, soil properties such as humus, temperature, sand and gravel content and the landscape variable reflecting isolation (distance to the nearest large dry grassland area). This landscape variable indicates that neighbouring grasslands are influencing the species richness of the sites. This may be a result of passive wind dispersal across the landscape or historic connection of the small sites with much larger dry grasslands. The size of the site did not show any significant correlation with total, dry grassland specialist, dry grassland generalist or generalist species richness. The small size of Collembola might explain these findings, because they have high population densities even in small patches.

7.
Environ Sci Eur ; 30(1): 53, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613461

RESUMEN

BACKGROUND: This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey. RESULTS: Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75-100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of < 40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (= above-average) or low (= below-average) correlation coefficients. CONCLUSIONS: LDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites.

8.
Chemosphere ; 67(10): 1956-66, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17223162

RESUMEN

In this study a combined approach of bioindication results correlated with an extensive set of data on air pollution and climate was used to assess the pollution status of the Man and Biosphere Reserve Wienerwald (Austria). Bryophytes served as impact indicators (via the Index of Atmospheric Purity-method IAP) at 30 sites as well as accumulation monitors for airborne trace elements (Al, Pb, V, S, Zn, Fe, Cu, Cr, Ni, Co, Mo, Cd, As, Sb and 16 EPA-PAHs) at 10 sites within the reserve. The results of these bioindication methods were subsequently correlated with further pollution (NO(2), SO(2) and dust) and climate data (precipitation, temperature and humidity). The findings obtained clearly indicate the following: Bryophyte distribution is solely influenced by the status of air quality, without interference by climatic or site-related factors, which is in contrast to several previous investigations. IAP-values correlated significantly with NO(2) (0.553; P=0.004), SO(2) winter values (0.511; P=0.013) and PM10 (dust) (0.561; P=0.013). The results obtained via chemical analyses revealed a strong correlation with data derived from the IAP methodology. In terms of the overall air quality within the biosphere reserve Wienerwald, the north-eastern part appears to be the most affected one with a most likely pollution contribution emitted by the capital city Vienna, agriculture and neighbouring countries.


Asunto(s)
Contaminantes Atmosféricos/análisis , Briófitas , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Atmosféricos/toxicidad , Austria , Briófitas/efectos de los fármacos , Briófitas/crecimiento & desarrollo , Clima , Metales Pesados/toxicidad , Modelos Biológicos , Hidrocarburos Policíclicos Aromáticos/toxicidad
9.
Environ Sci Pollut Res Int ; 13(6): 398-405, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17120830

RESUMEN

BACKGROUND, AIMS AND SCOPE: Over the last few years there has been extensive research for new indicators providing information about deposition resulting from road traffic and tunnel experiments received special attention in emission research. Mosses have been used for the estimation of atmospheric heavy metal and PAH depositions for more than three decades, although they were used only a few times for estimating ambient air pollution caused by traffic. In the current study, the suitability of using a moss species for monitoring road traffic emissions inside a tunnel was evaluated. This was a first-time ever attempt to use plants (mosses) as bioindicators in a tunnel experiment. Specifically, two relevant questions were examined: 1) Do mosses accumulate toxic substances derived from road traffic emissions under the extremely adverse conditions which can be found in a tunnel, and 2) Which substances can mainly be attributed to road traffic emissions and therefore be taken as efficient and reliable indicators for motor vehicles? METHODS: For the first time a biomonitor (the moss species Hylocomium splendens (Hedwig) B.S.G.) was used in a road tunnel experiment to analyse emissions from road traffic. Moss samples were exposed for four weeks in wooden frames (size 10 cm x 10 cm), covered by a thin plastic net with a mesh size of 1 cm x 1 cm. 17 elements, mainly heavy metals, and the 16 EPA-PAHs together with coronene were analysed by ICP-AES, AAS and GC-MSD. RESULTS: Enrichment factors, calculated by comparing post-experiment concentrations to those of a background site, were high for most PAHs, especially benzo(g,h,i)perylene (150.7), coronene (134.7), benzo(a)anthracene (125.0), indeno(1,2,3-c,d)pyrene (79.8), chrysene (78.1), pyrene (69.6) and benzo(b)-fluoranthene (67.4), and among the other elements for Sb (73.1), Mo (59.6), Cr (33.9), As (24.1), Cu (19.6), and Zn (17.1). All these substances can thus be taken as indicators for road traffic pollution. Concentrations were also significantly higher in the tunnel mosses for all investigated substances than along busy roads outside tunnels. Cluster analysis revealed groups of substances which could sensibly be attributed to various sources (abrasion processes, Diesel combustion) and enrichment in the various particle size classes. DISCUSSION: The extreme high concentrations in the analysed moss samples from inside the tunnel were due to higher concentrations in the ambient tunnel air, and the fact that already deposited chemical substances are not lost by rain, as well as efficient uptake capacities even under the extremely adverse conditions in a tunnel. In accordance with previous studies our results suggest that PAHs are better indicators for emissions from the burning process than heavy metals. CONCLUSIONS: As in open fields, mosses are suitable indicators for monitoring traffic emissions in tunnels. In addition to biomonitoring in open fields, in tunnel experiments mosses are even better indicators, because the confounding effects of other sources of pollution and the 'noise' in the accumulation process (e.g. washout through wet deposition) are minimised. The results of our study demonstrate the usefulness of mosses for surveying heavy metals and PAH emissions and deposition arising from road traffic sources, even under the extremely adverse conditions of the tunnel environment. RECOMMENDATION: It can be considered that biomonitors like mosses are a suitable alternative to technical particle filters inside tunnels. They are easy to handle, low in costs and valuable information regarding traffic emissions can be obtained. PERSPECTIVE: The results of this pilot-study proved the feasibility of the method, however, should be corroborated by further investigations based on a sample set that allows for generalization of the findings and might even include other moss species. A comparison of technical measurements with the biomonitoring method could lead to a more general acceptance of the results.


Asunto(s)
Contaminantes Atmosféricos/análisis , Bryopsida/química , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis , Austria , Análisis por Conglomerados , Análisis Multivariante , Proyectos Piloto , Transportes
10.
Environ Sci Pollut Res Int ; 23(11): 10457-10476, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27068915

RESUMEN

For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990-2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990-2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990-2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.


Asunto(s)
Contaminantes Atmosféricos/análisis , Briófitas/química , Contaminación Ambiental/análisis , Metales Pesados/análisis , Nitrógeno/análisis , Ecosistema , Europa (Continente) , Medición de Riesgo
11.
Sci Total Environ ; 538: 600-10, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26318813

RESUMEN

High atmospheric deposition of nitrogen (N) impacts functions and structures of N limited ecosystems. Due to filtering and related canopy drip effects forests are particularly exposed to N deposition. Up to now, this was proved by many studies using technical deposition samplers but there are only some few studies analysing the canopy drip effect on the accumulation of N in moss and related small scale atmospheric deposition patterns. Therefore, we investigated N deposition and related accumulation of N in forests and in (neighbouring) open fields by use of moss sampled across seven European countries. Sampling and chemical analyses were conducted according to the experimental protocol of the European Moss Survey. The ratios between the measured N content in moss sampled inside and outside of forests were computed and used to calculate estimates for non-sampled sites. Potentially influencing environmental factors were integrated in order to detect their relationships to the N content in moss. The overall average N content measured in moss was 20.0mgg(-1) inside and 11.9mgg(-1) outside of forests with highest N values in Germany inside of forests. Explaining more than 70% of the variance, the multivariate analyses confirmed that the sampling site category (site with/without canopy drip) showed the strongest correlation with the N content in moss. Spatial variances due to enhanced dry deposition in vegetation stands should be considered in future monitoring and modelling of atmospheric N deposition.


Asunto(s)
Contaminantes Atmosféricos/análisis , Briófitas/química , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Atmósfera/química , Ecosistema , Europa (Continente) , Bosques , Árboles
12.
Environ Pollut ; 194: 50-59, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25094057

RESUMEN

To assess the relationship between nitrogen concentrations in mosses and wet bulk nitrogen deposition or concentrations in precipitation, moss tissue and deposition were sampled within a distance of 1 km of each other in seven European countries. Relationships for various forms of nitrogen appeared to be asymptotic, with data for different countries being positioned at different locations along the asymptotic relationship and saturation occurring at a wet bulk nitrogen deposition of ca. 20 kg N ha(-1) yr(-1). The asymptotic behaviour was more pronounced for ammonium-N than nitrate-N, with high ammonium deposition at German sites being most influential in providing evidence of the asymptotic behaviour. Within countries, relationships were only significant for Finland and Switzerland and were more or less linear. The results confirm previous relationships described for modelled total deposition. Nitrogen concentration in mosses can be applied to identify areas at risk of high nitrogen deposition at European scale.


Asunto(s)
Contaminantes Atmosféricos/análisis , Briófitas/química , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Atmósfera/química , Europa (Continente) , Nitratos/análisis , Lluvia
13.
Environ Sci Pollut Res Int ; 18(1): 91-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20568017

RESUMEN

PURPOSE: This study aims at evaluating (a) whether concentrations of a suite of elements in mosses sampled in the arctic region around Zackenberg reflect background concentrations useful for estimating pollution levels in industrialized parts of the northern hemisphere as is attempted, e.g. in the framework of the UNECE ICP Vegetation monitoring programme, and (b) whether there are any influences from Zackenberg research station detectable in these concentrations. METHODS: Two moss species were sampled according to guidelines used in the UNECE ICP Vegetation programme. Samples were analysed for ¹95Pt at low resolution, ²7Al, 5²Cr, 65Cu, 66Zn, 95Mo, ¹¹¹Cd, ¹¹8Sn, ¹²¹Sb and ²°8Pb at medium resolution and 75As at high resolution on an Element 2 inductively coupled plasma sector field mass spectrometer. RESULTS: Except for Al, As and Cr, data from Zackenberg showed significantly lower mean element concentrations than those reported in comparable studies from all over the world including those from other Arctic environments. Minimum concentrations in Zackenberg mosses were consistently below all values reported so far for all elements analysed. The results of a PCA suggested only a slight impact from Zackenberg research station on concentrations of Cd, Mo and Zn in moss. CONCLUSIONS: We conclude that the sites in Zackenberg can be considered true background sites providing baseline concentrations of at least eight elements for comparable monitoring studies.


Asunto(s)
Briófitas/química , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Metales Pesados/análisis , Groenlandia , Análisis de Componente Principal
15.
Environ Sci Technol ; 42(23): 8661-7, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19192778

RESUMEN

To evaluate a new N-monitoring program in the framework of the UN-ECE ICP-Vegetation program using mosses as bioindicators, 490 moss samples were collected at 220 sites in Austria and analyzed for total N (N content) and delta(15)N signatures. Within-site variability of N content and delta(15)N signatures was tested for the first time on a large scale and was extremely low compared to between-site variability. N content in moss tissue ranged between 0.76% and 1.99% and delta(15)N signatures between -10.04 and -2.45. Altitude was significantly correlated with N content (P=0.021) and delta(15)N signatures (P<0.001). When comparing moss data to deposition data from 35 measurement sites, significant correlations between N content and N deposition (P=0.014) were found. Increasing delta(15)N signatures provided evidence for a change in N source and its respective isotopic composition with altitude, e.g., due to long-distance transport of reactive N or as a result of changes in the wetdry deposition ratio. Our study underlines that N deposition can generally be estimated by N content in mosses on a large scale, but that this approach has certain limitations, especially in areas with large differences in altitude and precipitation.


Asunto(s)
Briófitas/química , Monitoreo del Ambiente , Nitrógeno/análisis , Altitud , Austria , Geografía , Isótopos de Nitrógeno , Análisis de Componente Principal , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA