Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Hematol ; 95(9): 1085-1098, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32510613

RESUMEN

Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes. Comprehensive elucidation of molecular pathways governing and regulating cellular iron acquisition and heme trafficking is required to better understand physiological and pathological processes affecting erythropoiesis. Here, we report the first genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens in human erythroid cells to identify determinants of iron and heme uptake, as well as heme-mediated erythroid differentiation. We identified several candidate modulators of TBI acquisition including TfR1, indicating that our approach effectively revealed players mechanistically relevant to the process. Interestingly, components of the endocytic pathway were also revealed as potential determinants of transferrin acquisition. We deciphered a role for the vacuolar-type H+ - ATPase (V- ATPase) assembly factor coiled-coil domain containing 115 (CCDC115) in TBI uptake and validated this role in CCDC115 deficient K562 cells. Our screen in hemin-treated cells revealed perturbations leading to cellular adaptation to heme, including those corresponding to trafficking mechanisms and transcription factors potentiating erythroid differentiation. Pathway analysis indicated that endocytosis and vesicle acidification are key processes for heme trafficking in erythroid precursors. Furthermore, we provided evidence that CCDC115, which we identified as required for TBI uptake, is also involved in cellular heme distribution. This work demonstrates a previously unappreciated common intersection in trafficking of transferrin iron and heme in the endocytic pathway of erythroid cells.


Asunto(s)
Células Eritroides/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Proteínas del Tejido Nervioso , Transporte Biológico Activo , Sistemas CRISPR-Cas , Células Eritroides/citología , Pruebas Genéticas , Células HEK293 , Hemo/genética , Humanos , Células K562 , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
J Nutr Health Aging ; 28(5): 100212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489995

RESUMEN

Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.


Asunto(s)
Homeostasis , Hierro de la Dieta , Hierro , Necesidades Nutricionales , Humanos , Homeostasis/fisiología , Anciano , Hierro de la Dieta/administración & dosificación , Hierro/metabolismo , Envejecimiento/fisiología , Estado Nutricional , Anemia Ferropénica/prevención & control , Deficiencias de Hierro , Sobrecarga de Hierro
3.
Exp Gerontol ; 184: 112333, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37993077

RESUMEN

By definition, aging is a natural, gradual and continuous process. On the other hand, frailty reflects the increase in vulnerability to stressors and shortens the time without disease (health span) while longevity refers to the length of life (lifespan). The average life expectancy has significantly increased during the last few decades. A longer lifespan has been accompanied by an increase in frailty and decreased independence in older adults, with major differences existing between men and women. For example, women tend to live longer than men but also experience higher rates of frailty and disability. Sex differences prevent optimization of lifestyle interventions and therapies to effectively prevent frailty. Sex differences in frailty and aging are rooted in a complex interplay between uncontrollable (genetic, epigenetic, physiological), and controllable factors (psychosocial and lifestyle factors). Thus, understanding the underlying causes of sex differences in frailty and aging is essential for developing personalized interventions to promote healthy aging and improve quality of life in older men and women. In this review, we have discussed the key contributors and knowledge gaps related to sex differences in aging and frailty.


Asunto(s)
Fragilidad , Humanos , Femenino , Masculino , Anciano , Calidad de Vida , Caracteres Sexuales , Anciano Frágil , Envejecimiento
4.
Ageing Res Rev ; 72: 101510, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767974

RESUMEN

Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.


Asunto(s)
Envejecimiento , Enfermedades Neurodegenerativas , Homeostasis , Humanos , Hierro , Longevidad
5.
Toxicol Sci ; 169(1): 108-121, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30815697

RESUMEN

Arsenic exposure is a worldwide health concern associated with an increased risk of skin, lung, and bladder cancer but arsenic trioxide (AsIII) is also an effective chemotherapeutic agent. The current use of AsIII in chemotherapy is limited to acute promyelocytic leukemia (APL). However, AsIII was suggested as a potential therapy for other cancer types including chronic myeloid leukemia (CML), especially when combined with other drugs. Here, we carried out a genome-wide CRISPR-based approach to identify modulators of AsIII toxicity in K562, a human CML cell line. We found that disruption of KEAP1, the inhibitory partner of the key antioxidant transcription factor Nrf2, or TXNDC17, a thioredoxin-like protein, markedly increased AsIII tolerance. Loss of the water channel AQP3, the zinc transporter ZNT1 and its regulator MTF1 also enhanced tolerance to AsIII whereas loss of the multidrug resistance protein ABCC1 increased sensitivity to AsIII. Remarkably, disruption of any of multiple genes, EEFSEC, SECISBP2, SEPHS2, SEPSECS, and PSTK, encoding proteins involved in selenocysteine metabolism increased resistance to AsIII. Our data suggest a model in which an intracellular interaction between selenium and AsIII may impact intracellular AsIII levels and toxicity. Together this work revealed a suite of cellular components/processes which modulate the toxicity of AsIII in CML cells. Targeting such processes simultaneously with AsIII treatment could potentiate AsIII in CML therapy.


Asunto(s)
Antineoplásicos/farmacología , Trióxido de Arsénico/farmacología , Perfilación de la Expresión Génica , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Sistemas CRISPR-Cas , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Edición Génica , Regulación Leucémica de la Expresión Génica , Células HEK293 , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Transducción de Señal , Selenito de Sodio/farmacología , Factores de Tiempo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA