Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499399

RESUMEN

A method for the immobilization of an antibacterial chitosan coating to polymeric urinary medical catheters is presented. The method comprises a two-step plasma-treatment procedure, followed by the deposition of chitosan from the water solution. In the first plasma step, the urinary catheter is treated with vacuum-ultraviolet radiation to break bonds in the polymer surface film and create dangling bonds, which are occupied by hydrogen atoms. In the second plasma step, polymeric catheters are treated with atomic oxygen to form oxygen-containing surface functional groups acting as binding sites for chitosan. The presence of oxygen functional groups also causes a transformation of the hydrophobic polymer surface to hydrophilic, thus enabling uniform wetting and improved adsorption of the chitosan coating. The wettability was measured by the sessile-drop method, while the surface composition and structure were measured by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Non-treated samples did not exhibit successful chitosan immobilization. The effect of plasma treatment on immobilization was explained by noncovalent interactions such as electrostatic interactions and hydrogen bonds.


Asunto(s)
Quitosano , Quitosano/química , Catéteres Urinarios , Rayos Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros , Oxígeno
2.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941018

RESUMEN

In this research, antimicrobial polysaccharide chitosan was used as a surface coating for packaging material. The aim of our research was to establish an additive formulation of chitosan and antioxidative plant extracts as dispersion of nanoparticles. Chitosan nanoparticles with embedded thyme, rosemary and cinnamon extracts were synthesized, and characterized for this purpose. Two representative, commercially used foils, polypropylene (PP) and polyethylene (PE), previously activated by UV/ozone to improve coating adhesion, were functionalized using chitosan-extracts nanoparticle dispersions. The foils were coated by two layers. A solution of macromolecular chitosan was applied onto foils as a first layer, followed by the deposition of various extracts embedded into chitosan nanoparticles that were attached as an upper layer. Since active packaging must assure bioactive efficiency at the interface with food, it is extremely important to understand the surface characteristics and phenomena of functionalized foils. The physico-chemical analyses of functionalized foils were thus comprised of surface elemental composition, surface charge, wettability, as well as surface morphology. It has been shown that coatings were applied successfully with an elemental composition, surface charge and morphology that should enable coating stability, homogeneity and consequently provide an active concept of the packaging surface in contact with food. Moreover, the wettability of foils was improved in order to minimize the anti-fogging behavior.


Asunto(s)
Quitosano/química , Polifenoles/química , Embalaje de Productos , Humectabilidad , Coloides
3.
Anal Biochem ; 557: 131-141, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30053399

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to analyse cellulose viscose fibres treated with different chitosan-based solutions. The analysis reports several new features in the TOF-SIMS spectra for systems with various forms of chitosan-treated surfaces. The characteristic positive ion TOF-SIMS signals for chitosan are reported at m/z 147.90, 207.07, and 221.09, and characteristic signals for trimethyl chitosan are present at m/z 58.03 and 102.09. Furthermore, new fragments were suggested to characterise acetylated chitosan molecules. The relative surface concentrations of different species were obtained based on the specific signal ratios (originating from a specific fragment and cellulose). SIMS imaging was then performed in order to investigate the surface distribution of chitosan, trimethyl chitosan, and Na-containing nanoparticles. In order to perform TOF-SIMS imaging, the above-mentioned characteristic signals were employed and m/z 22.99 was used for Na nanoparticles.


Asunto(s)
Celulosa/análisis , Quitosano/química , Espectrometría de Masa de Ion Secundario , Estructura Molecular , Factores de Tiempo
4.
J Environ Manage ; 183(Pt 3): 1009-1025, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27692514

RESUMEN

After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low-pressure technology to prevent odorous gasses from spreading into the environment. There are presented two new technologies: a) Sewage sludge or digestate drying in the vacuum chamber consumes approx. 1 kWh/dm3 of evaporated water and, therefore, reaches a price of 180-240 Euros/t Dry Matter (DM), and b) Heavy metals' reduction using adsorbing reaction with magnetite nanostructures can decrease the level of heavy metals in the sewage sludge or digestate up to 20% in one cycle, which can be repeated several times on the same sludge. The aim of the paper is to present a newly developed technology which can provide economic and safe use of moderate heavy metals polluted sewage sludge on agricultural lands as organic fertilizer and, therefore, returning the nutrients (nitrogen, phosphorous, potassium) back to the human food chain, instead of being incinerated or landfilled. The proposed drying technology is economically sustainable due to the low vacuum and temperature (35 °C-40 °C), that increases the efficiency of the heat pump (coefficient of performance 5-7,2) of the energy produced by the anaerobic digestion. Hence, the main emphasis is given to the development of: an efficient method for heavy metals' reduction in the sludge treatment chain by using chitosan covered magnetite nanoparticles, an efficient drying method in a vacuum with low temperature energy which can be exploited from sludge digestion to reduce organic matter, and an energy sustainable concept of sludge treatment, with the addition of fats, oil and grease (FOG) to produce enough biogas for sludge drying to produce fertilizer.


Asunto(s)
Fertilizantes , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Agricultura , Biocombustibles , Quitosano , Desecación , Fertilizantes/economía , Incineración , Nanopartículas de Magnetita , Metales Pesados/análisis , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Nitrógeno/análisis , Fósforo , Potasio , Eliminación de Residuos Líquidos/economía , Eliminación de Residuos Líquidos/instrumentación , Aguas Residuales/química
5.
Materials (Basel) ; 17(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38894002

RESUMEN

This study addresses the structure-property relationship within the green concept of wood fibres with cellulose nanofibre functionalised composites (nW-PPr) containing recycled plastic polyolefins, in particular, polypropylene (PP-r). It focuses especially on the challenges posed by nanoscience in relation to wood fibres (WF) and explores possible changes in the thermal properties, crystallinity, morphology, and mechanical properties. In a two-step methodology, wood fibres (50% wt%) were first functionalised with nanocellulose (nC; 1-9 wt%) and then, secondly, processed into composites using an extrusion process. The surface modification of nC improves its compatibility with the polymer matrix, resulting in improved adhesion, mechanical properties, and inherent biodegradability. The effects of the functionalised WF on the recycled polymer composites were investigated systematically and included analyses of the structure, crystallisation, morphology, and surface properties, as well as thermal and mechanical properties. Using a comprehensive range of techniques, including X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), zeta potential measurements, and dynamic mechanical analysis (DMA), this study aims to unravel the intricate interplay of factors affecting the performance and properties of the developed nanocellulose-functionalised wood fibre-polymer composites. The interfacial adhesion of the nW-PPr polymer composites, crystallisation process, and surface properties was improved due to the formation of an H-bond between the nW coupling agent and neat PP-r. In addition, the role of nW (1.0 wt%) as a nucleating agent resulted in increased crystallinity, or, on the other hand, promoted the interfacial interaction with the highest amount (3.0% wt%, 9.0% wt%) of nW in the PP-r preferentially between the nW and neat PP-r, and also postponed the crystallisation temperature. The changes in the isoelectric point of the nW-PPr polymer composites compared to the neat PP-r polymer indicate the acid content of the polymer composite and, consequently, the final surface morphology. Finally, the higher storage modulus of the composites compared to neat r-PP shows a dependence on improved crystallinity, morphology, and adhesion. It was clear that the results of this study contribute to a better understanding of sustainable materials and can drive the development of environmentally friendly composites applied in packaging.

6.
Materials (Basel) ; 17(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612120

RESUMEN

Poly(ethylene furanoate) (PEF)-based nanocomposites were fabricated with silver (Ag) and titanium dioxide (TiO2) nanoparticles by the in-situ polymerization method. The importance of this research work is to extend the usage of PEF-based nanocomposites with improved material properties. The PEF-Ag and PEF-TiO2 nanocomposites showed a significant improvement in color concentration, as determined by the color colorimeter. Scanning electron microscopy (SEM) photographs revealed the appearance of small aggregates on the surface of nanocomposites. According to crystallinity investigations, neat PEF and nanocomposites exhibit crystalline fraction between 0-6%, whereas annealed samples showed a degree of crystallinity value above 25%. Combining the structural and molecular dynamics observations from broadband dielectric spectroscopy (BDS) measurements found strong interactions between polymer chains and nanoparticles. Contact angle results exhibited a decrease in the wetting angle of nanocomposites compared to neat PEF. Finally, antimicrobial studies have been conducted, reporting a significant rise in inhibition of over 15% for both nanocomposite films against gram-positive and gram-negative bacteria. From the overall results, the synthesized PEF-based nanocomposites with enhanced thermal and antimicrobial properties may be optimized and utilized for the secondary packaging (unintended food-contact) materials.

7.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679314

RESUMEN

Here, we present a detailed review of recent research and achievements in the field of combining two extremely important polysaccharides; namely, cellulose and chitosan. The most important properties of the two polysaccharides are outlined, giving rise to the interest in their combination. We present various structures and forms of composite materials that have been developed recently. Thus, aerogels, hydrogels, films, foams, membranes, fibres, and nanofibres are discussed, alongside the main techniques for their fabrication, such as coextrusion, co-casting, electrospinning, coating, and adsorption. It is shown that the combination of bacterial cellulose with chitosan has recently gained increasing attention. This is particularly attractive, because both are representative of a biopolymer that is biodegradable and friendly to humans and the environment. The rising standard of living and growing environmental awareness are the driving forces for the development of these materials. In this review, we have shown that the field of combining these two extraordinary polysaccharides is an inexhaustible source of ideas and opportunities for the development of advanced functional materials.

8.
Polymers (Basel) ; 15(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679154

RESUMEN

Due to rising consumer demand the food packaging industry is turning increasingly to packaging materials that offer active functions. This is achieved by incorporating active compounds into the basic packaging materials. However, it is currently believed that adding active compounds as a coating over the base packaging material is more beneficial than adding them in bulk or in pouches, as this helps to maintain the physicochemical properties of the base material along with higher efficiency at the interface with the food. Colloidal systems have the potential to be used as active coatings, while the application of coatings in the form of colloidal dispersions allows for prolonged and controlled release of the active ingredient and uniform distribution, due to their colloidal/nano size and large surface area ratio. The objective of this review is to analyse some of the different colloidal solutions previously used in the literature as coatings for active food packaging and their advantages. The focus is on natural bio-based substances and packaging materials such as PLA, due to consumer awareness and environmental and regulatory issues. The antiviral concept through the surface is also discussed briefly, as it is an important strategy in the context of the current pandemic crisis and cross-infection prevention.

9.
Front Bioeng Biotechnol ; 11: 1241739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609118

RESUMEN

Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.

10.
Polymers (Basel) ; 15(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376304

RESUMEN

The isolation of keratin from poultry feathers using subcritical water was studied in a batch reactor at temperatures (120-250 °C) and reaction times (5-75 min). The hydrolyzed product was characterized by FTIR and elemental analysis, while the molecular weight of the isolated product was determined by SDS-PAGE electrophoresis. To determine whether disulfide bond cleavage was followed by depolymerization of protein molecules to amino acids, the concentration of 27 amino acids in the hydrolysate was analyzed by GC/MS. The optimal operating parameters for obtaining a high molecular weight protein hydrolysate from poultry feathers were 180 °C and 60 min. The molecular weight of the protein hydrolysate obtained under optimal conditions ranged from 4.5 to 12 kDa, and the content of amino acids in the dried product was low (2.53% w/w). Elemental and FTIR analyses of unprocessed feathers and dried hydrolysate obtained under optimal conditions showed no significant differences in protein content and structure. Obtained hydrolysate is a colloidal solution with a tendency for particle agglomeration. Finally, a positive influence on skin fibroblast viability was observed for the hydrolysate obtained under optimal processing conditions for concentrations below 6.25 mg/mL, which makes the product interesting for various biomedical applications.

11.
Appl Biochem Biotechnol ; 195(11): 6768-6789, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36920716

RESUMEN

Probiotics are live microorganisms that can have beneficial effects on humans. Encapsulation offers them a better chance of survival. Therefore, nozzle-free electrospinning was introduced for their embedding in nanofibrous material. Probiotic Lactobacillus paragasseri K7 in lyophilized and fresh form, with and without inulin as prebiotic, was added to a polymer solution of sodium alginate (NaAlg) and polyethylene oxide (PEO). Conductivity, viscosity, pH, and surface tension were determined to define the optimal concentration and volume ratio for smooth electrospinning. The success of the formed nanoscale materials was examined by scanning electron microscope (SEM), while the entrapment of probiotics in the nanofibrous mats was detected by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Spontaneous diffusion of bacteria from electrospun samples in PBS buffer pH 7.4 was studied by plate counting on MRS agar. By exposing polymer solutions containing L. paragasseri K7 and inulin to a high electric field, the nanofilm was formed on a polypropylene substrate, used as collecting material. When polymer solutions without inulin were used, the bead-like nanofibers may have become visible. The SEM results suggest that inulin, in addition to K7 strain, additionally lowers the conductivity of spinning macromolecular solution and hinders the nanofiber formation. The results of ATR-FTIR confirmed the presence of L. paragasseri K7 embedded in nanocomposites by the appearance of characteristic peaks. The samples containing the probiotic regardless of its form with inulin had similar surface composition, except that the sodium content was higher in the samples with fresh probiotic, probably due to greater and thus less easy embedding of the bacteria in NaAlg. Within 2 h, the largest amount of probiotic strain K7 was spontaneously released from the electrospun sample containing the inulin and probiotic in freeze-dried form (44%), while the amount released from the nanofibrous sample, which also contained the inulin and probiotic in fresh form, was significantly lower (21%). These preliminary results demonstrate the potential of nozzle-free electrospinning technology for the development of probiotic delivery systems for short-term use, such as feminine hygiene materials (tampons, pads, napkins).


Asunto(s)
Nanofibras , Probióticos , Humanos , Nanofibras/química , Inulina , Prebióticos
12.
Polymers (Basel) ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376353

RESUMEN

This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples' intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure-properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82-87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.

13.
Int J Biol Macromol ; 236: 123951, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36898451

RESUMEN

Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.


Asunto(s)
COVID-19 , Quitosano , Humanos , COVID-19/prevención & control , Antivirales/farmacología , Pandemias/prevención & control , Celulosa/farmacología , Máscaras
14.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38231946

RESUMEN

Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.

15.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458280

RESUMEN

This research focuses on key priorities in the field of sustainable plastic composites that will lead to a reduction in CO2 pollution and support the EU's goal of becoming carbon neutral by 2050. The main challenge is to develop high-performance polyphenol-reinforced thermoplastic composites, where the use of natural fillers replaces the usual chemical additives with non-toxic ones, not only to improve the final performance but also to increase the desired multifunctionalities (structural, antioxidant, and antibacterial). Therefore, poly (lactic acid) (PLA) composites based on Kraft lignin (KL) and tannin (TANN) were investigated. Two series of PLA composites, PLA-KL and PLA-TANN, which contained natural fillers (0.5%, 1.0%, and 2.5% (w/w)) were prepared by hot melt extrusion. The effects of KL and TANN on the PLA matrices were investigated, especially the surface physicochemical properties, mechanical properties, and antioxidant/antimicrobial activity. The surface physicochemical properties were evaluated by measuring the contact angle (CA), roughness, zeta potential, and nanoindentation. The results of the water contact angle showed that neither KL nor TANN caused a significant change in the wettability, but only a slight increase in the hydrophilicity of the PLA composites. The filler loading, the size of the particles with their available functional groups on the surfaces of the PLA composites, and the interaction between the filler and the PLA polymer depend on the roughness and zeta potential behavior of the PLA-KL and PLA-TANN composites and ultimately improve the surface mechanical properties. The antioxidant properties of the PLA-KL and PLA-TANN composites were determined using the DPPH (2,2'-diphenyl-1-picrylhydrazyl) test. The results show an efficient antioxidant behavior of all PLA-KL and PLA-TANN composites, which increases with the filler content. Finally, the KL- and PLA-based TANN have shown resistance to the Gram-negative bacteria, E. coli, but without a correlation trend between polyphenol filler content and structure.

16.
Polymers (Basel) ; 14(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015613

RESUMEN

The outbreak of the worrisome coronavirus disease in 2019 has caused great concern among the global public, especially regarding the need for personal protective equipment with applied antiviral agents to reduce the spread and transmission of the virus. Thus, in our research, chitosan-based bioactive polymers as potential antiviral agents were first evaluated as colloidal macromolecular solutions by elemental analysis and charge. Three different types of low and high molecular weight chitosan (LMW Ch, HMW Ch) and a LMW Ch derivative, i.e., quaternary chitosan (quart-LMW Ch), were used. To explore their antiviral activity for subsequent use in the form of coatings, the macromolecular Chs dispersions were incubated with the model virus phi6 (surrogate for SARS-CoV-2), and the success of virus inactivation was determined. Inactivation of phi6 with some chitosan-based compounds was very successful (>6 log), and the mechanisms behind this were explored. The changes in viral morphology after incubation were observed and the changes in infrared bands position were determined. In addition, dynamic and electrophoretic light scattering studies were performed to better understand the interaction between Chs and phi6. The results allowed us to better understand the antiviral mode of action of Chs agents as a function of their physicochemical properties.

17.
J Funct Biomater ; 13(4)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36412869

RESUMEN

Due to the growing problem of food and packaging waste, environmental awareness, and customer requirements for food safety, there is a great need for the development of innovative and functional packaging. Among these developments, the concept of active packaging is at the forefront. The shortcoming in this area is that there is still a lack of multifunctional concepts, as well as green approaches. Therefore, this work focuses on the development of active chemical substances of natural origin applied as a coating on polylactic acid (PLA) films. Biopolymer chitosan and plant extracts rich in phenolic compounds (blackberry leaves-Rubus fruticosus, needles of prickly juniper-Juniperus oxycedrus) obtained from plant biomass from Southeastern Europe were selected in this work. In order to increase the effectiveness of individual substances and to introduce multifunctionality, they were combined in the form of different colloidal structural formulations. The plant extracts were embedded in chitosan biopolymer particles and dispersed in a macromolecular chitosan solution. In addition, a two-layer coating, the first of a macromolecular chitosan solution, and the second of a dispersion of the embedded extracts in chitosan particles, was applied to the PLA films as a novel approach. The success of the coatings was monitored by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and the wettability was evaluated by contact angle measurements. Scanning electron microscopy SEM tracked the morphology and homogeneity of the coating. Antioxidation was studied by DPPH and ABTS spectrophotometric tests, and microbiological analysis of the films was performed according to the ISO 22196 Standard. Desorption of the coating from the PLA was monitored by reducing the elemental composition of the films themselves. The successful functionalization of PLA was demonstrated, while the XPS and ATR-FTIR analyses clearly showed the peaks of elemental composition of the extracts and chitosan on the PLA surface. Moreover, in all cases, the contact angle of the bilayer coatings decreased by more than 35-60% and contributed to the anti-fogging properties. The desorption experiments, due to decrease in the concentration of the specific typical element (nitrogen), indicated some migration of substances from the PLA's surface. The newly developed films also exhibited antioxidant properties, with antioxidant ABTS efficiencies ranging from 83.5 to 100% and a quite high inhibition of Gram-positive Staphylococcus aureus bacteria, averaging over 95%. The current functionalization of PLA simultaneously confers antifogging, antioxidant, and antimicrobial properties and drives the development of a biodegradable and environmentally friendly composite material using green chemistry principles.

18.
ACS Appl Mater Interfaces ; 13(20): 23352-23368, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33998809

RESUMEN

Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption are the prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer a promising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to research and develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties in contact with the complex biological environment are crucial. In this study, we developed an aqueous stable and crosslinker-free polyelectrolyte-surfactant complex (PESC) composed of a renewable cationic polysaccharide, chitosan, a lysine-based anionic surfactant (77KS), and an amphoteric antibiotic, amoxicillin, which is widely used to treat a number of infections caused by bacteria. We successfully introduced the PESC as bioactive functional nanolayers on the "model" and "real" polydimethylsiloxane (PDMS) surfaces under dynamic and ambient conditions. Besides their high stability and improved wettability, these uniformly deposited nanolayers (thickness: 44-61 nm) with mixed charges exhibited strong repulsion toward three model blood proteins (serum albumin, fibrinogen, and γ-globulin) and their competitive interactions in the mixture in real-time, as demonstrated using a quartz crystal microbalance with dissipation (QCM-D). The functional nanolayers with a maximum negative zeta potential (ζ: -19 to -30 mV at pH 7.4), water content (1628-1810 ng cm-2), and hydration (low viscosity and elastic shear modulus) correlated with the mass, conformation, and interaction nature of proteins. In vitro antimicrobial activity testing under dynamic conditions showed that the charged nanolayers actively inhibited the growth of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to unmodified PDMS. Given the ease of fabrication of multifunctional and charged biobased coatings with simultaneous protein-repellent and antimicrobial activities, the limitations of individual approaches could be overcome leading to a better and advanced design of various medical devices (e.g., catheters, prosthetics, and stents).


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos , Prótesis e Implantes/microbiología , Tensoactivos , Antibacterianos/química , Antibacterianos/farmacología , Quitosano/química , Quitosano/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/química , Lisina/farmacología , Nanomedicina , Nanoestructuras/química , Proteínas/química , Silicio , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Tensoactivos/química , Tensoactivos/farmacología
19.
Polymers (Basel) ; 13(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064585

RESUMEN

The surface properties of wood fiber (WF) filled polymer composites depend on the filler loading and are closely related to the distribution and orientation in the polymer matrix. In this study, wood fibers (WF) were incorporated into thermoplastic composites based on non-recycled polypropylene (PP) and recycled (R-PP) composites by melt compounding and injection moulding. ATR-FTIR (attenuated total reflection Fourier transform infrared spectroscopy) measurements clearly showed the propagation of WF functional groups at the surface layer of WF-PP/WF-R-PP composites preferentially with WF loading up to 30%. Optical microscopy and nanoindentation method confirmed the alignment of thinner skin layer of WF-PP/WF-R-PP composites with increasing WF addition. The thickness of the skin layer was mainly influenced by the WF loading. The effect of the addition of WF on modulus and hardness, at least at 30 and 40 wt.%, varies for PP and R-PP matrix. On the other hand, surface zeta potential measurements show increased hydrophilicity with increasing amounts of WF. Moreover, WF in PP/R-PP matrix is also responsible for the antioxidant properties of these composites as measured by DPPH (2,2'-diphenyl-1-picrylhydrazyl) assay.

20.
Polymers (Basel) ; 13(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34451355

RESUMEN

Packaging applications cover approximately 40% of the total plastics production, whereas food packaging possesses a high proportion within this context. Due to several environmental concerns, petroleum-based polymers have been shifted to their biobased counterparts. Poly(lactic acid) (PLA) has been proved the most dynamic biobased candidate as a substitute of the conventional polymers. Despite its numerous merits, PLA exhibits some limitations, and thus reinforcing agents are commonly investigated as fillers to ameliorate several characteristics. In the present study, two series of PLA-based nanocomposites filled with biobased kraft-lignin (KL) and tannin (T) in different contents were prepared. A melt-extrusion method was pursued for nanocomposites preparation. The thermal stability of the prepared nanocomposites was examined by Thermogravimetric Analysis, while thermal degradation kinetics was applied to deepen this process. Pyrolysis-Gas Chromatography/Mass Spectrometry was employed to provide more details of the degradation process of PLA filled with the two polyphenolic fillers. It was found that the PLA/lignin nanocomposites show better thermostability than neat PLA, while tannin filler has a small catalytic effect that can reduce the thermal stability of PLA. The calculated Eα value of PLA-T nanocomposite was lower than that of PLA-KL resulting in a substantially higher decomposition rate constant, which accelerate the thermal degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA