Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(3): 304-314, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37782126

RESUMEN

It has been discovered that plant pathogens produce effectors that spread via plasmodesmata (PD) to allow modulation of host processes in distal uninfected cells. Fusarium oxysporum f. sp. lycopersici (Fol) facilitates effector translocation by expansion of the size-exclusion limit of PD using the Six5/Avr2 effector pair. How other fungal pathogens manipulate PD is unknown. We recently reported that many fungal pathogens belonging to different families carry effector pairs that resemble the SIX5/AVR2 gene pair from Fol. Here, we performed structural predictions of three of these effector pairs from Leptosphaeria maculans (Lm) and tested their ability to manipulate PD and to complement the virulence defect of a Fol SIX5 knockout mutant. We show that the AvrLm10A homologs are structurally related to FolSix5 and localize at PD when they are expressed with their paired effectors. Furthermore, these effectors were found to complement FolSix5 function in cell-to-cell mobility assays and in fungal virulence. We conclude that distantly related fungal species rely on structurally related paired effector proteins to manipulate PD and facilitate effector mobility. The wide distribution of these effector pairs implies Six5-mediated effector translocation to be a conserved propensity among fungal plant pathogens. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas Fúngicas , Fusarium , Humanos , Proteínas Fúngicas/metabolismo , Virulencia , Plasmodesmos/metabolismo , Enfermedades de las Plantas/microbiología
2.
RNA Biol ; 11(7): 968-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181358

RESUMEN

Post-transcriptional maturation of plant mitochondrial transcripts requires several steps. Among these, the generation of mature 5' ends is still one of the most enigmatic processes. Toward a characterization of proteins involved in 5' processing of mitochondrial transcripts in Arabidopsis (Arabidopsis thaliana), we now analyzed 5' maturation of nad2 transcripts. Based on natural genetic variation affecting 5' ends of nad2 transcripts in ecotype Can-0 and complementation studies we now identified RNA processing factor 7, which takes part in the generation of the 5' terminus of the mature nad2 mRNA. RPF7 is a relatively short regular P-class pentatricopeptide repeat protein comprising seven canonical P repeats and a single short S repeat. The corresponding allele in Can-0 encodes a truncated version of this protein lacking two C-terminal repeats, which are essential for the function of RPF7. Furthermore we established transgenic plants expressing artifical microRNAs targeting the mitochondrial polynucleotide phosphorylase (PNPase), which results in substantial reduction of the PNPase mRNA levels and strong knockdown of this gene. Detailed quantitative studies of 5' and 3' extended nad2 precursor RNAs in these knockdown plants as well as in the rpf7-1 knockout mutant suggest that 5' processing contributes to the stability of mitochondrial transcripts in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas de Silenciamiento del Gen , Mitocondrias/genética , Mitocondrias/metabolismo , Polimorfismo Genético , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Estabilidad del ARN , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética
3.
Plants (Basel) ; 10(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374373

RESUMEN

Grapevine (Vitis vinifera ssp. vinifera) is a major fruit crop with high economic importance. Due to its susceptibility towards fungal and oomycete pathogens such as Erysiphe necator and Plasmopara viticola, the causal agents of powdery and downy mildew (PM and DM, respectively), grapevine growers annually face a major challenge in coping with shortfalls of yield caused by these diseases. Here we report the confirmation of a genetic resource for grapevine resistance breeding against PM. During the delimitation process of Ren3 on chromosome 15 from the cultivar 'Regent', a second resistance-encoding region on chromosome 15 termed Ren9 was characterized. It mediates a trailing necrosis associated with the appressoria of E. necator and restricts pathogen growth. In this study, we confirm this QTL in a related mapping population of 'Regent' × 'Cabernet Sauvignon'. The data show that this locus is located at the upper arm of chromosome 15 between markers GF15-58 (0.15 Mb) and GF15-53 (4 Mb). The efficiency of the resistance against one of the prominent European PM isolates (EU-B) is demonstrated. Based on fine-mapping and literature knowledge we propose two possible regions of interest and supply molecular markers to follow both regions in marker-assisted selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA