Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 18(4)2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29597324

RESUMEN

The viability and vigor of crop seeds are crucial indicators for evaluating seed quality, and high-quality seeds can increase agricultural yield. The conventional methods for assessing seed viability are time consuming, destructive, and labor intensive. Therefore, a rapid and nondestructive technique for testing seed viability has great potential benefits for agriculture. In this study, single-kernel Fourier transform near-infrared (FT-NIR) spectroscopy with a wavelength range of 1000-2500 nm was used to distinguish viable and nonviable supersweet corn seeds. Various preprocessing algorithms coupled with partial least squares discriminant analysis (PLS-DA) were implemented to test the performance of classification models. The FT-NIR spectroscopy technique successfully differentiated viable seeds from seeds that were nonviable due to overheating or artificial aging. Correct classification rates for both heat-damaged kernels and artificially aged kernels reached 98.0%. The comprehensive model could also attain an accuracy of 98.7% when combining heat-damaged samples and artificially aged samples into one category. Overall, the FT-NIR technique with multivariate data analysis methods showed great potential capacity in rapidly and nondestructively detecting seed viability in supersweet corn.


Asunto(s)
Zea mays , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Semillas , Espectroscopía Infrarroja Corta
2.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111819

RESUMEN

Rice lodging seriously affects rice quality and production. Traditional manual methods of detecting rice lodging are labour-intensive and can result in delayed action, leading to production loss. With the development of the Internet of Things (IoT), unmanned aerial vehicles (UAVs) provide imminent assistance for crop stress monitoring. In this paper, we proposed a novel lightweight detection system with UAVs for rice lodging. We leverage UAVs to acquire the distribution of rice growth, and then our proposed global attention network (GloAN) utilizes the acquisition to detect the lodging areas efficiently and accurately. Our methods aim to accelerate the processing of diagnosis and reduce production loss caused by lodging. The experimental results show that our GloAN can lead to a significant increase in accuracy with negligible computational costs. We further tested the generalization ability of our GloAN and the results show that the GloAN generalizes well in peers' models (Xception, VGG, ResNet, and MobileNetV2) with knowledge distillation and obtains the optimal mean intersection over union (mIoU) of 92.85%. The experimental results show the flexibility of GloAN in rice lodging detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA