Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 17(2): e1008992, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33556114

RESUMEN

Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT1 accumulation and localization, thus interfering with its interaction with CDK7. Furthermore, CVB3 VP1 could suppress CAK complex enzymic phosphorylation activity towards RNA Pol II and CDK4/6, direct substrates of CAK. VP1 also suppresses phosphorylation of retinoblastoma protein (pRb), an indirect CAK substrate, especially at phospho-pRb Ser780 and phospho-pRb Ser807/811 residues, which are associated with cell proliferation. Finally, we present evidence using deletion mutants that the C-terminal domain (VP1-D8, 768-859aa) is the minimal VP1 region required for its interaction with MAT1, and furthermore, VP1-D8 alone was sufficient to arrest cells in G1/S phase as observed during CVB3 infection. Taken together, we demonstrate that CVB3 VP1 can inhibit CAK complex assembly and activity through direct interaction with MAT1, to block MAT1-mediated CAK-CDK4/6-Rb signaling, and ultimately suppress cell proliferation in pancreatic cells. These findings substantially extend our basic understanding of CVB3-mediated pancreatitis, providing strong candidates for strategic therapeutic targeting.


Asunto(s)
Proteínas de la Cápside/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Infecciones por Coxsackievirus/complicaciones , Quinasas Ciclina-Dependientes/metabolismo , Enterovirus Humano B/patogenicidad , Pancreatitis/patología , Factores de Transcripción/metabolismo , Proteínas de la Cápside/genética , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Infecciones por Coxsackievirus/virología , Quinasas Ciclina-Dependientes/genética , Humanos , Pancreatitis/metabolismo , Pancreatitis/virología , Fosforilación , Factores de Transcripción/genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
2.
J Fish Dis ; 46(3): 247-259, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515399

RESUMEN

Aeromonas veronii is an important zoonotic and aquatic pathogen that causes a number of illnesses in both humans and animals. It is related to gastroenteritis, skin and soft tissue infections and bacteremia in humans, as well as causing significant economic losses in aquaculture owing to fish sepsis. Here, we constructed the flagellar cap gene (fliD) mutant strain of A. veronii by suicide plasmid-mediated homologous recombination system and analysed its characteristics. It was found that the deletion of fliD had no effect on growth and biochemical properties and could be inherited stably. However, the motility of A. veronii ΔfliD was significantly reduced, the flagellum was defective and the biofilm formation was attenuated compared with that of A. veronii wild-type strain. In vivo experiments revealed that the colonization capacity of ΔfliD was significantly lower than that of the wild-type strain in the period of first 24 h, and the median lethal dose (LD50 ) was 56 times higher than that of the wild-type strain. The Cyprinus carpio infected with the wild-type strain indicated faster death speed and more severe clinical signs compared to ΔfliD strain. These results suggest that fliD is closely related to the virulence of A. veronii and plays an important role in pathogenicity, providing the foundation for pathogenic mechanism studies of A. veronii.


Asunto(s)
Aeromonas , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Humanos , Animales , Aeromonas veronii/genética , Virulencia/genética
3.
PLoS Pathog ; 16(9): e1008765, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32970777

RESUMEN

Tilapia is one of the most important economic and fastest-growing species in aquaculture worldwide. In 2015, an epidemic associated with severe mortality occurred in adult tilapia in Hubei, China. The causative pathogen was identified as Tilapia parvovirus (TiPV) by virus isolation, electron microscopy, experimental challenge, In situ hybridization (ISH), indirect immunofluorescence (IFA), and viral gene sequencing. Electron microscopy revealed large numbers of parvovirus particles in the organs of diseased fish, including kidney, spleen, liver, heart, brain, gill, intestine, etc. The virions were spherical in shape, non-enveloped and approximately 30nm in diameter. The TiPV was isolated and propagated in tilapia brain cells (TiB) and induced a typical cytopathic effect (CPE) after 3 days post-infection (dpi). This virus was used to experimentally infect adult tilapia and clinical disease symptoms similar to those observed naturally were replicated. Additionally, the results of ISH and IFA showed positive signals in kidney and spleen tissues from TiPV-infected fish. To identify TiPV-specific sequences, the near complete genome of TiPV was obtained and determined to be 4269 bp in size. Phylogenetic analysis of the NS1 sequence revealed that TiPV is a novel parvovirus, forms a separate branch in proposed genus Chapparvovirus of Parvoviridae. Results presented here confirm that TiPV is a novel parvovirus pathogen that can cause massive mortality in adult tilapia. This provides a basis for the further studies to define the epidemiology, pathology, diagnosis, prevention and treatment of this emerging viral disease.


Asunto(s)
Enfermedades de los Peces/virología , Infecciones por Parvoviridae/virología , Parvovirus/patogenicidad , Tilapia/virología , Animales , China , Efecto Citopatogénico Viral/efectos de los fármacos , Bazo/virología
4.
Fish Shellfish Immunol ; 123: 142-151, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35219830

RESUMEN

Grass carp reovirus genotype Ⅱ (GCRV II) causes severe hemorrhagic disease in grass carp and affects the aquaculture industry in China. GCRV Ⅱ isolates have been collected from different epidemic areas in China, and these isolates can lead to different degrees of hemorrhagic symptoms in grass carp. Rare minnow (Gobiocypris rarus) is widely used as a model fish to study the mechanism of hemorrhagic disease because of its high sensitivity to GCRV. In this study, the protein levels in the spleen of rare minnow after infection with GCRV virulent isolate JZ809 and attenuated isolate XT422 were investigated using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics. 109 and 50 differentially expressed proteins (DEPs) in the virulent and attenuated infection groups were obtained, respectively, among which 40 DEPs were identified in both groups. Combining protein expression profiling with gene ontology (GO) annotation, the responses of rare minnow to the two genotypes GCRV Ⅱ in terms of upregulated proteins were similar, focusing on ATP synthesis, in which ATP can serve as a "danger" signal to activate an immunoreaction in eukaryotes. Meanwhile, the virulent genotype JZ809 induced more immunoproteins and increased the levels of ubiquitin-proteasome system members to adapt to virus infection. However, together with a persistent and excessive inflammatory response and declining carbon metabolism, rare minnow presented more severe hemorrhagic disease and mortality after infection with virulent JZ809 than with attenuated XT422. The results provide a valuable information that will increase our understanding of the pathogenesis of viruses with different levels of virulence and the mechanism of interaction between the virus and host. Furthermore, the 6 proteins that were only significantly upregulated in the XT422 infection group all belonged to cluster 2, and 28 of 30 proteins that were only upregulated in JZ809 infection group were clustered into cluster 1. For the downregulated proteins, all DEPs in the XT422 infection group were clustered into cluster 4, and 25 of 39 proteins that were only significantly downregulated in the JZ809 infection group belonged to cluster 3. The results indicated that the DEPs in the attenuated XT422 infection group might be sensitive and their abundance changed more quickly when fish experienced virus infection.


Asunto(s)
Carpas , Cyprinidae , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Adenosina Trifosfato , Animales , Anticuerpos Antivirales , Genotipo , Proteómica , Infecciones por Reoviridae/veterinaria
5.
Fish Shellfish Immunol ; 120: 92-101, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34800657

RESUMEN

Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) has become a popular technique to assess gene expression. Suitable reference genes are normally identified first to ensure accurate normalization. The aim of the present study was to select the most stable genes in embryonic developmental stages, the early development of immune organs, and cells infected with Chinese rice-field eel rhabdovirus (CrERV) of the rice-field eel (Monopterus albus). Four reference genes, including those encoding 18S ribosomal RNA (18SrRNA), beta actin (ß-actin), elongation factor 1 alpha (EF1ɑ), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were assessed using geNorm, NormFinder, BestKeeper, and RefFinder software. Analyses indicated the stability ranking was 18SrRNA > ß-actin > GAPDH > EF1α in the embryonic stage, with 18SrRNA as the most stable reference gene. For immunity-related organs at different developmental stages, the order in the thymus was ß-actin > GAPDH > EF1α > 18SrRNA, with ß-actin as the most stable gene. In both spleen and kidney tissues, the rank order was EF1ɑ > GAPDH > ß-actin > 18SrRNA, with EF1α as the most stable gene. Furthermore, in rice-field eel kidney (CrE-K) cells infected with CrERV, the ranking was EF1ɑ > ß-actin > GAPDH > 18SrRNA, with EF1α as the most stable gene. The results for cells infected with CrERV were verified by testing signaling pathway genes catenin beta 1 (CTNNB1) and NOTCH1 based on the above four genes after virus infection in CrE-K cells. This study laid the foundation for choosing suitable reference genes for immunity-related gene expression analysis in rice-field eel.


Asunto(s)
Infecciones por Rhabdoviridae/veterinaria , Smegmamorpha , Actinas/genética , Animales , Perfilación de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , ARN Ribosómico 18S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estándares de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Rhabdoviridae , Smegmamorpha/genética , Smegmamorpha/inmunología , Smegmamorpha/virología
6.
Appl Microbiol Biotechnol ; 106(22): 7377-7386, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216901

RESUMEN

Ferroptosis is a recently discovered modulated cell death mechanism caused by the accumulation of iron-dependent lipid peroxides to toxic levels and plays an important role in tumor immunology and neurology. Recent studies have shown that ferroptosis may play a crucial role in bacterial infection pathogenesis, which may be useful in anti-infection therapies. However, how bacteria enter cells to induce ferroptosis after invading the host immune system remains largely unknown. In addition, the current studies only focus on the relationship between a single bacterial species or genus and host cell ferroptosis, and there is no systematic summary of its regulatory mechanism. Therefore, our review firstly sums up the role of ferroptosis in bacterial infection and its regulatory mechanism, and innovatively speculates on the function and potential mechanism of extracellular vesicles (EVs) in bacterial-induced ferroptosis, in order to provide possible novel directions and ideas for future anti-infection research. KEY POINTS: • Ferroptosis presents a novel mechanism for bacterial host interaction • EVs provide the potential mechanism for bacterial-induced ferroptosis • The relationship of EVs with ferroptosis provides possible directions for future treatment of bacterial infection.


Asunto(s)
Vesículas Extracelulares , Ferroptosis , Vesículas Extracelulares/metabolismo , Muerte Celular , Hierro/metabolismo , Bacterias/metabolismo
7.
J Fish Dis ; 45(2): 361-371, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34843633

RESUMEN

Chinese rice-field eels rhabdovirus (CrERV), belonging to the genus Perhabdovirus in the family Rhabdoviridae, is the causative agent of the haemorrhagic disease of Chinese rice-field eels, Monopterus albus. The present study aims to establish a cell line derived from the kidney of Chinese rice-field eel (CrEK) for the further study of the pathogenic virus. CrEK cells were epithelioid-like and grew well in M199 medium supplemented with 10% foetal bovine serum at 28°C, and the cell line has been subcultured for more than 80 times. Karyotyping analysis of CrEK cells at 25th passage indicated a modal chromosome number of 24. Significant cytopathic effect (CPE) was observed in CrEK cells after infection with CrERV, and the virus titre reached 107.8 ± 0.45 TCID50 /mL. The transmission electron microscopy revealed that there were a large number of virus particles in the cytoplasm of cells. The virus infection in cells was also assayed by using indirect immunofluorescence assay (IFA), fluorescence in situ hybridization (FISH), reverse transcription PCR (RT-PCR) and quantitative real-time reverse transcription-PCR (qRT-PCR). In experimental infection, CrERV cultured by cells could cause over 90% mortality in fish. CrEK represents the first kidney cell line originated from Chinese rice-field eels and be a potential material for investigating the mechanism of virus infection in this fish and the control methods for the disease.


Asunto(s)
Enfermedades de los Peces , Rhabdoviridae , Animales , Línea Celular , China , Anguilas , Hibridación Fluorescente in Situ , Riñón , Rhabdoviridae/genética
8.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012277

RESUMEN

Glycosylphosphatidylinositol mannosyltransferase I (GPI-MT-I) is an essential glycosyltransferase of glycosylphosphatidylinositol-anchor proteins (GPI-APs) that transfers the first of the four mannoses in GPI-AP precursors, which have multiple functions, including immune response and signal transduction. In this study, the GPI-MT-I gene that regulates GPI-AP biosynthesis in Andrias davidianus (AdGPI-MT-I) was characterized for the first time. The open reading frame (ORF) of AdGPI-MT-I is 1293 bp and encodes a protein of 430 amino acids that contains a conserved PMT2 superfamily domain. AdGPI-MT-I mRNA was widely expressed in the tissues of the Chinese giant salamander. The mRNA expression level of AdGPI-MT-I in the spleen, kidney, and muscle cell line (GSM cells) was significantly upregulated post Chinese giant salamander iridovirus (GSIV) infection. The mRNA expression of the virus major capsid protein (MCP) in AdGPI-MT-I-overexpressed cells was significantly reduced. Moreover, a lower level of virus MCP synthesis and gene copying in AdGPI-MT-I-overexpressed cells was confirmed by western blot and ddPCR. These results collectively suggest that GSIV replication in GSM cells was significantly reduced by the overexpression of the AdGPI-MT-I protein, which may contribute to a better understanding of the antiviral mechanism against iridovirus infection.


Asunto(s)
Iridovirus , Animales , China , Iridovirus/genética , Iridovirus/metabolismo , Manosiltransferasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Urodelos
9.
Appl Environ Microbiol ; 87(19): e0096821, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34319809

RESUMEN

Shigellosis has become a serious threat to health in many developing countries due to the severe diarrhea it causes. Shigella flexneri 2a is the principal species responsible for this endemic disease. Despite multiple attempts to design a vaccine against shigellosis, no effective vaccine has been developed yet. Lipopolysaccharide (LPS) is both an essential virulence factor and an antigen protective against Shigella, due to its outer domain, termed O-polysaccharide antigen. In the present study, S. flexneri 2a O-polysaccharide antigen was innovatively biosynthesized in Salmonella and attached to core-lipid A via the ligase WaaL, with purified outer membrane vesicles (OMVs) utilized as vaccine vectors. Here, we identified the expression of the heterologous O-antigen and have described the isolation, characterization, and immune protection efficiency of the OMV vaccine. Furthermore, the results of animal experiments indicated that immunization of mice with the OMV vaccine induced significant specific anti-Shigella LPS antibodies in the serum, with similar trends in IgA levels from vaginal secretions and fluid from bronchopulmonary lavage, both intranasally and intraperitoneally. The OMV vaccine derived from both routes of administration provided significant protection against virulent S. flexneri 2a infection, as judged by a serum bactericidal assay, opsonization assay, and challenge test. This vaccination strategy represents a novel and improved approach to control shigellosis by the combination of Salmonella glycosyl carrier lipid bioconjugation with OMVs. IMPORTANCEShigella, the cause of shigellosis or bacillary dysentery, is a major public health concern, especially for children in developing countries. An effective vaccine would control the spread of the disease to some extent. However, no licensed vaccine against Shigella infection in humans has so far been developed. The Shigella O-antigen polysaccharide is effective in stimulating the production of protective antibodies and so could represent a vaccine antigen candidate. In addition, bacterial outer membrane vesicles (OMVs) have been used as antigen delivery platforms due to their nanoscale properties and ease of antigen delivery to trigger an immune response. Therefore, the present study provides a new strategy for vaccine design, combining a glycoconjugated vaccine with OMVs. The design concept of this strategy is the expression of Shigella O-antigen via the LPS synthesis pathway in recombinant Salmonella, from which the OMV vaccine is then isolated. Based on these findings, we believe that the novel vaccine design strategy in which polysaccharide antigens are delivered via bacterial OMVs will be effective for the development and clinical application of an effective Shigella vaccine.


Asunto(s)
Membrana Externa Bacteriana , Disentería Bacilar/prevención & control , Antígenos O/administración & dosificación , Salmonella typhimurium , Vacunas contra la Shigella/administración & dosificación , Shigella flexneri/inmunología , Animales , Proliferación Celular , Citocinas/inmunología , Disentería Bacilar/inmunología , Femenino , Linfocitos/inmunología , Ratones Endogámicos BALB C , Bazo/citología
10.
Fish Shellfish Immunol ; 103: 9-16, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32344024

RESUMEN

The Chinese sturgeon (Acipenser sinensis) is one of the critically endangered aquatic species in China. It is also among the oldest extant actinopterygian fish species. To advance the characterization of the Chinese sturgeon immune system, we identified the gene encoding the macrophage migration inhibitory factor (MIF), a multifunctional cytokine that contributes to both innate and adaptive immune responses. Molecular and phylogenic analysis indicates the Chinese sturgeon (cs) MIF share a high degree of structural conservation with other MIF sequences and is closely related to other bony fish MIF. At steady state, cs-mif gene is expressed at relatively high levels in the brain, and to a lesser but significant level in liver, spleen, kidney, gut and skin. The spatial expression patterns determined by in situ hybridization indicates a preferential distribution of cs-mif transcripts in the cerebral cortex, the gut epithelium, hematopoietic tissues of kidney, spleen and liver parenchyma, and skin epidermis. Marked increase of cs-mif gene expression was induced by lipopolysaccharide (LPS) stimulation and Aeromonas hydrophila infection in all tested tissues. Furthermore, higher cs-mif transcript levels were detected in the liver, spleen, kidney, gut and skin during stress response resulting from hyperthermia. These results are not only consistent with the expected role of cs-mif gene in innate immunity but also suggest a potential role of this gene in stress response to hyperthermia in the Chinese sturgeon.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces/genética , Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/inmunología , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Lipopolisacáridos/farmacología , Factores Inhibidores de la Migración de Macrófagos/química , Filogenia , Alineación de Secuencia/veterinaria
11.
Int J Mol Sci ; 21(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213935

RESUMEN

Mx, Myxovirus resistance is an important interferon-stimulated protein that mediates antiviral responses. In this study, the expression and activities of Chinese giant salamander, Andrias davidianus Mx gene, AdMx, were investigated. The AdMx cDNA sequence contains an open reading frame (ORF) of 2112 nucleotides, encoding a putative protein of 703 aa. Meanwhile, AdMx possesses the conserved tripartite GTP binding motif and a dynamin family signature. qRT-PCR analysis revealed a broad expression of AdMx in vivo, with the highest expression levels in brain, kidney and spleen. The AdMx expression level in kidney, spleen and muscle significantly increased at 6 h after Chinese giant salamander iridovirus (GSIV) infection and peaked at 48 h, while that in muscle cell line (GSM) was not noticeably up-regulated until 72 h post infection. Additionally, a plasmid expressing AdMx was constructed and transfected into the Chinese giant salamander GSM cells. The virus load and gene copies in AdMx over-expressed cells were significantly reduced compared with those in the control cells. Moreover, compared to the control cells, a lower level of virus major capsid protein (MCP) synthesis in AdMx over-expressed cells was confirmed by Western blot. These results collectively suggest that Mx plays an important antiviral role in the immune responses against GSIV in Chinese giant salamander.


Asunto(s)
Sistemas de Lectura Abierta , Orthomyxoviridae/patogenicidad , Urodelos/genética , Animales , Línea Celular , Resistencia a la Enfermedad/genética , Riñón/metabolismo , Músculo Esquelético/metabolismo , Bazo/metabolismo , Urodelos/inmunología , Urodelos/virología
12.
Fish Shellfish Immunol ; 91: 78-86, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31039439

RESUMEN

Type I interferons, as a class of multipotent cytokines, play a key role in host antiviral immune responses. In this study, a type I IFN coding gene of gibel carp, Carassius auratus gibelio, CagIFNa was cloned and sequenced. The full-length cDNA sequence of CagIFNa consists of 724 nucleotides that encode a predicted protein of 183 amino acids. CagIFNa has two highly conserved cysteine residues in the deduced protein, which is mostly conserved in the fish group I type I IFNs. CagIFNa was identified as a member of the IFNa subgroup of group I type I IFNs by phylogenetic analysis. CagIFNa transcripts were detected in all investigated tissues with higher levels in the liver, intestine, spleen and head kidney of gibel carp. Following injection with Cyprinid herpesvirus 2 (CyHV-2), CagIFNa gene expression was significantly inhibited in the spleen but delayed and then increased in head kidneys. Similarly, while CagIFNa expression was rapidly induced in gibel carp brain (GiCB) cells by poly I:C stimulation and its high induction level was delayed following CyHV-2 infection. CagIFNa overexpression in GiCB cells drastically reduced virus CPE and titer. Furthermore, several genes associated with type I IFN signaling pathway including IRF3, IRF7, IRF9, STAT1, Mx1 and PKR were induced in GiCB cells overexpressing CagIFNa upon CyHV-2 infection. These results show that CagIFNa plays a role in antiviral immune system in gibel carp.


Asunto(s)
Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Carpa Dorada/genética , Carpa Dorada/inmunología , Inmunidad Innata/genética , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Herpesviridae , Infecciones por Herpesviridae/inmunología , Interferón Tipo I/química , Filogenia , Poli I-C/farmacología , Distribución Aleatoria , Alineación de Secuencia/veterinaria
13.
Fish Shellfish Immunol ; 89: 52-60, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30904683

RESUMEN

Siniperca chuatsi is an economically important fish in China, but infectious spleen and kidney necrosis virus (ISKNV) causes high mortality and significant economic losses. Currently, vaccination is the most promising strategy to prevent infectious diseases, while adjuvant can effectively enhance immune responses. In this study, inactivated ISKNV vaccine was prepared, then poly (I:C), chitosan, anisodamine and ims1312 were used as adjuvants to evaluate the effect on the immune responses and ISKNV replication. Chitosan could strongly boost the protection of liver and spleen tissues by pathological sections. In serum, poly (I:C) and chitosan group had protective effect on catalase, acid phosphatase, blood urea nitrogen. mRNA expressions showed these adjuvants induced the cytokines of early immune responses (TNF-α, Viperin) in both spleen and mesonephron by real time quantitative RT-PCR assays. Meanwhile, poly (I:C), chitosan and anisodamine were significantly improved the antiviral function and inhibited ISKNV replication. Chitosan and anisodamine played a significantly protective role in the immune protective rate test. The results indicated that all the four adjuvants are valid in the inactivated ISKNV vaccine, and chitosan is recommended preferentially. The present study provides reference for other animal vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Quitosano/inmunología , Iridoviridae/inmunología , Perciformes/inmunología , Alcaloides Solanáceos/inmunología , Vacunas Virales/inmunología , Animales , Infecciones por Virus ADN/inmunología , Enzimas/sangre , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Perfilación de la Expresión Génica/veterinaria , Inmunidad Innata/efectos de los fármacos , Perciformes/genética , Poli I-C/inmunología , Replicación Viral/efectos de los fármacos
14.
Arch Virol ; 164(1): 105-116, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30284632

RESUMEN

In 2017, a clinical disease outbreak resulted in substantial mortality of adults and larvae of cultured Chinese rice-field eels (Monopterus albus) on a farm in Hubei, Central China. A rhabdovirus was isolated from moribund specimens, and typical clinical symptoms associated with an outbreak included an enlarged and swollen head. This differed from previous observations. Histological changes included necrosis and cavities of various sizes within the brain and kidney. Homogenized tissues of diseased Chinese rice-field eels were screened for viral isolation using six different fish cell lines. A rhabdovirus was isolated following observation of cytopathic effect (CPE) in a gibel carp brain (GiCB) cell line and confirmed by RT-PCR. Electron microscopy showed large numbers of rhabdovirus-shaped particles in the cytoplasm of the brain cells of the diseased Chinese rice-field eels and in the infected GiCB cell line. This virus has been named "Chinese rice-field eel rhabdovirus" (CrERV), and the complete nucleotide sequence of CrERV was cloned. This rhabdovirus is composed of 11,545 nucleotides with the following genomic organization: 3'-N-P-M-G-L-5'. The genes are separated by conserved gene junctions, and phylogenetic analysis of the L sequence revealed that CrERV forms a separate branch with Siniperca chuatsi rhabdovirus (SCRV) and hybrid snakehead rhabdovirus C1207 (HSHRV-C1207). This is the first report of the complete sequence of CrERV from the Chinese rice-field eel in China.


Asunto(s)
Anguilas/virología , Enfermedades de los Peces/virología , Rhabdoviridae/genética , Rhabdoviridae/aislamiento & purificación , Animales , Línea Celular , Genoma Viral , Cultivo de Virus
15.
J Fish Dis ; 42(4): 497-510, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30742312

RESUMEN

The replication profile of white spot syndrome virus (WSSV) in crayfish, Procambarus clarkii, at different water temperature was investigated in this study. The WSSV detections were negative at 15 ± 1°C, and the natural infection ratio increased at 19 ± 1°C (24.2% ± 2.25%), reached 100% at 25 ± 1°C and decreased at 30 ± 1°C (93.2% ± 3.37%). The WSSV genome copies number was much higher at 25 ± 1°C (≥5 × 106.45 ± 0.35 /mg) than at 15 ± 1°C (≤5 × 101.13 ± 0.12 /mg), 19 ± 1°C (≤5 × 102.74 ± 0.48 /mg) and 32 ± 1°C (≤5 × 103.18 ± 0.27 /mg). Meanwhile, the significant transcription signals of immediate early gene ie1 and late gene vp28 and a large number of virus particles were detected in epitheliums of stomach, gut and gill, hepatopancreas, heart and muscle cells at 25 ± 1°C by using in situ hybridization (ISH) and transmission electron microscopy. The experimental infection of P. clarkii with WSSV infection showed reduced mortality and lower virus copies number at 19 ± 1°C (23.51% ± 0.84%, ≤5 × 103.41 ± 0.11 /mg) and 32 ± 1°C (38.42% ±  1.21%, ≤5 × 103.72 ± 0.13 /mg) compared to 25 ± 1°C (100%, ≥5 × 104.99 ± 0.24 /mg). The water temperature regulated the transcription of immune-related genes (crustin2, prophenoloxidase (proPO) and heat shock protein70 (Hsp70)), with some differences between WSSV treatments and control treatments. These results demonstrate that water temperature has effect on WSSV proliferation, which may due to transcriptional response of immune-related genes to temperature.


Asunto(s)
Astacoidea/virología , Infecciones por Virus ADN/veterinaria , Temperatura , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/fisiología , Animales , Infecciones por Virus ADN/virología , Alimentos Marinos/virología , Activación Transcripcional
16.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817556

RESUMEN

Chinese giant salamander iridovirus (GSIV) is the causative pathogen of Chinese giant salamander (Andrias davidianus) iridovirosis, leading to severe infectious disease and huge economic losses. However, the infection mechanism by GSIV is far from clear. In this study, a Chinese giant salamander muscle (GSM) cell line is used to investigate the mechanism of cell death during GSIV infection. Microscopy observation and DNA ladder analysis revealed that DNA fragmentation happens during GSIV infection. Flow cytometry analysis showed that apoptotic cells in GSIV-infected cells were significantly higher than that in control cells. Caspase 8, 9, and 3 were activated in GSIV-infected cells compared with the uninfected cells. Consistently, mitochondria membrane potential (MMP) was significantly reduced, and cytochrome c was released into cytosol during GSIV infection. p53 expression increased at an early stage of GSIV infection and then slightly decreased late in infection. Furthermore, mRNA expression levels of pro-apoptotic genes participating in the extrinsic and intrinsic pathway were significantly up-regulated during GSIV infection, while those of anti-apoptotic genes were restrained in early infection and then rose in late infection. These results collectively indicate that GSIV induces GSM apoptotic cell death involving mitochondrial damage, caspases activation, p53 expression, and pro-apoptotic molecules up-regulation.


Asunto(s)
Proteínas Anfibias/metabolismo , Apoptosis , Caspasas/metabolismo , Infecciones por Virus ADN/metabolismo , Regulación de la Expresión Génica , Iridovirus/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Animales , Infecciones por Virus ADN/patología , Mitocondrias/patología , Urodelos
17.
Virol J ; 15(1): 92, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29793525

RESUMEN

BACKGROUND: Grass carp (Ctenopharyngodon idella) hemorrhagic disease is caused by an acute infection with grass carp reovirus (GCRV). The frequent outbreaks of this disease have suppressed development of the grass carp farming industry. GCRV104, the representative strain of genotype III grass carp (Ctenopharyngodon idella) reovirus, belongs to the Spinareovirinae subfamily and serves as a model for studying the strain of GCRV which encodes an outer-fiber protein. There is no commercially available vaccine for this genotype of GCRV. Therefore, the discovery of new inhibitors for genotype III of GCRV will be clinically beneficial. In addition, the mechanism of GCRV with fiber entry into cells remains poorly understood. METHODS: Viral entry was determined by a combination of specific pharmacological inhibitors, transmission electron microscopy, and real-time quantitative PCR. RESULTS: Our results demonstrate that both GCRV-JX01 (genotype I) and GCRV104 (genotype III) of GCRV propagated in the grass carp kidney cell line (CIK) with a typical cytopathic effect (CPE). However, GCRV104 replicated slower than GCRV-JX01 in CIK cells. The titer of GCRV-JX01 was 1000 times higher than GCRV104 at 24 h post-infection. We reveal that ammonium chloride, dynasore, pistop2, chlorpromazine, and rottlerin inhibit viral entrance and infection, but not nystatin, methyl-ß-cyclodextrin, IPA-3, amiloride, bafilomycin A1, nocodazole, and latrunculin B. Furthermore, GCRV104 and GCRV-JX01 infection of CIK cells depended on dynamin and the acidification of the endosome. This was evident by the significant inhibition following prophylactic treatment with the lysosomotropic drug ammonium chloride or dynasore. CONCLUSIONS: Taken together, our data have suggested that GCRV104 enters CIK cells through clathrin-mediated endocytosis in a pH-dependent manner. We also suggest that dynamin is critical for efficient viral entry. Additionally, the phosphatidylinositol 3-kinase inhibitor wortmannin and the protein kinase C inhibitor rottlerin block GCRV104 cell entry and replication.


Asunto(s)
Antivirales/farmacología , Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Enfermedades de los Peces/tratamiento farmacológico , Infecciones por Reoviridae/tratamiento farmacológico , Reoviridae/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Acetofenonas/farmacología , Cloruro de Amonio/farmacología , Animales , Benzopiranos/farmacología , Carpas , Línea Celular , Clorpromazina/farmacología , Clatrina/genética , Dinaminas/genética , Dinaminas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/virología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/virología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Expresión Génica , Genotipo , Hidrazonas/farmacología , Concentración de Iones de Hidrógeno , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/virología , Reoviridae/genética , Reoviridae/crecimiento & desarrollo , Reoviridae/metabolismo , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Sulfonamidas/farmacología , Tiazolidinas/farmacología , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
18.
Fish Shellfish Immunol ; 76: 206-215, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29477498

RESUMEN

The hemorrhagic disease of grass carp (Ctenopharyngodon idellus) induced by grass carp reovirus (GCRV) leads to huge economic losses in China and currently, there are no effective methods available for prevention and treatment. The various GCRV genotypes may be one of the major obstacles in the pursuit of an effective antiviral treatment. In this study, we exploited CRISPR/Cas9 gene editing to specifically knockout the DNA sequence of the grass carp Junctional Adhesion Molecule-A (gcJAM-A) and evaluated in vitro resistance against various GCRV genotypes. Our results show that CRISPR/Cas9 effectively knocked out gcJAM-A and reduced GCRV infection for two different genotypes in permissive grass carp kidney cells (CIK), as evidenced by suppressed cytopathic effect (CPE) and GCRV progeny production in infected cells. In addition, with ectopic expression of gcJAM-A in cells, non-permissive cells derived from Chinese giant salamander (Andrias davidianus) muscle (GSM) could be highly infected by both GCRV-JX0901 and Hubei grass carp disease reovirus (HGDRV) strains that have different genotypes. Taken together, the results demonstrate that gcJAM-A is necessary for GCRV infection, implying a potential approach for viral control in aquaculture.


Asunto(s)
Sistemas CRISPR-Cas/genética , Carpas/genética , Carpas/inmunología , Enfermedades de los Peces/inmunología , Molécula A de Adhesión de Unión/deficiencia , Animales , Línea Celular , Edición Génica/veterinaria , Interacciones Huésped-Patógeno , Reoviridae/fisiología , Infecciones por Reoviridae/inmunología
19.
Fish Shellfish Immunol ; 72: 629-638, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29183810

RESUMEN

Toll-like receptors (TLRs) are important components of innate immunity. TLRs recognize pathogen-associated molecular patterns (PAMPs) and initiate downstream signaling pathways in response. In present study, we report the identification of two TLRs from gibel carp (Carassius auratus gibelio), TLR2 and TLR3 (designated CagTLR2 and CagTLR3, respectively). We report on the genomic structures and mRNA expression patterns of CagTLR2 and CagTLR3. Five exons and four introns were identified from the genomic DNA sequence of CagTLR3 (4749 bp in total length); this genomic organization is similar to that of TLR3 in zebrafish and human. However, only one intron was identified from the CagTLR2 genomic locus (3166 bp in total length); this unique genomic organization of CagTLR2 is different from that of TLR2 in fish and humans. The cDNAs of CagTLR2 and CagTLR3 encoded 791 and 904 amino acid residues, respectively. CagTLR2 and CagTLR3 contained two distinct structural/functional motifs of the TLR family: a leucine-rich repeat (LRR) domain in the extracellular portion and a toll/interleukin-1 receptor (TIR) domain in the intracellular portion. The positions of critical amino acid residues involed in PAMP recognition and signaling pathway transduction in mammalian TLRs were conserved in CagTLR2 and CagTLR3. Phylogenetic analysis revealed a closer clustering of CagTLR2 and CagTLR3 with TLRs from freshwater fish than with marine fish species. In healthy gibel carp, transcripts of these genes were detected in all examined tissues, and high expression levels of CagTLR2 and CagTLR3 were observed in liver and brain, respectively. Following injection with CyHV-2, expression levels of CagTLR2 and CagTLR3 were significantly upregulated in the spleens of gibel carp after three days, and CagTLR3 transcript levels were rapidly increased in head kidney after 12 h. These results suggest that CagTLR2 and CagTLR3 are functionally involved in the induction of antiviral immune response.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Regulación de la Expresión Génica/inmunología , Carpa Dorada/genética , Carpa Dorada/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Perfilación de la Expresión Génica , Filogenia , Alineación de Secuencia/veterinaria , Receptor Toll-Like 2/química , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 3/química , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/inmunología
20.
BMC Infect Dis ; 18(1): 51, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370771

RESUMEN

BACKGROUND: S.aureus is a predominant pathogen that causes infection in critically ill patients, but little information exists regarding the characterization of S. aureus from different sources in burn patients in southeastern China. METHODS: We enrolled 125 patients with S. aureus infection in burns center between Jan 2014 and Dec 2015. S. aureus isolates were characterized by antimicrobial susceptibility test, toxin gene detection, and molecular typing with multilocus sequence type, staphylococcal protein A (spa) type, and staphylococcal cassette chromosome mec (SCCmec) type. RESULTS: Sixty-eight MRSA were isolated from SSTI and 31 from non-SSTI patients, respectively. Overall, the drug-resistant ability of S. aureus isolated from SSTI was higher than that from non-SSTI groups. SCCmecIII-CC239-t030 was the most common clone (38 from SSTIs, and 8 from non-SSTIs). Seg was the most common enterotoxin gene (21 from SSTIs and 33 from non-SSTIs). Isolates from SSTIs was more likely to carry seb (P = 0.04), while those from non-SSTIs tended to carry sea and seg (P = 0.002 and 0.01, respectively). Although isolates carried four hemolysin genes, there was no significant difference between them (P > 0.05). CONCLUSION: SCCmecIII-CC239-t030 was the most common clone in Jiangxi burns center, China. The molecular characterization of S. aureus was quite different between SSTI and non-SSTI groups.


Asunto(s)
Quemaduras/complicaciones , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Adolescente , Adulto , Anciano , Unidades de Quemados , Quemaduras/microbiología , Niño , Preescolar , China , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Enterotoxinas/genética , Femenino , Humanos , Lactante , Masculino , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Tipificación de Secuencias Multilocus , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/clasificación , Staphylococcus aureus/aislamiento & purificación , Factores de Virulencia/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA