Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(50): 26122-26127, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34596317

RESUMEN

Production of multicarbon (C2+ ) liquid fuels is a challenging task for electrocatalytic CO2 reduction, mainly limited by the stabilization of reaction intermediates and their subsequent C-C couplings. In this work, we report a unique catalyst, the coordinatively unsaturated Cu sites on amorphous CuTi alloy (a-CuTi@Cu) toward electrocatalytic CO2 reduction to multicarbon (C2-4 ) liquid fuels. Remarkably, the electrocatalyst yields ethanol, acetone, and n-butanol as major products with a total C2-4 faradaic efficiency of about 49 % at -0.8 V vs. reversible hydrogen electrode (RHE), which can be maintained for at least 3 months. Theoretical simulations and in situ characterization reveals that subsurface Ti atoms can increase the electron density of surface Cu sites and enhance the adsorption of *CO intermediate, which in turn reduces the energy barriers required for *CO dimerization and trimerization.

2.
Nat Commun ; 12(1): 3540, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112770

RESUMEN

A grand challenge for proton exchange membrane electrolyzers is the rational design of oxygen evolution reaction electrocatalysts to balance activity and stability. Here, we report a support-stabilized catalyst, the activated ~200 nm-depth IrW nanochannel that achieves the current density of 2 A cm-2 at an overpotential of only ~497 mV and maintains ultrastable gas evolution at 100 mA cm-2 at least 800 h with a negligible degradation rate of ~4 µV h-1. Structure analyses combined with theoretical calculations indicate that the IrW support alters the charge distribution of surface (IrO2)n clusters and effectively confines the cluster size within 4 (n≤4). Such support-stabilizing effect prevents the surface Ir from agglomeration and retains a thin layer of electrocatalytically active IrO2 clusters on surface, realizing a win-win strategy for ultrahigh OER activity and stability. This work would open up an opportunity for engineering suitable catalysts for robust proton exchange membrane-based electrolyzers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA