Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(6): e3002666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905316

RESUMEN

Breast cancer is the most prevalent malignancy and the most significant contributor to mortality in female oncology patients. Potassium Two Pore Domain Channel Subfamily K Member 1 (KCNK1) is differentially expressed in a variety of tumors, but the mechanism of its function in breast cancer is unknown. In this study, we found for the first time that KCNK1 was significantly up-regulated in human breast cancer and was correlated with poor prognosis in breast cancer patients. KCNK1 promoted breast cancer proliferation, invasion, and metastasis in vitro and vivo. Further studies unexpectedly revealed that KCNK1 increased the glycolysis and lactate production in breast cancer cells by binding to and activating lactate dehydrogenase A (LDHA), which promoted histones lysine lactylation to induce the expression of a series of downstream genes and LDHA itself. Notably, increased expression of LDHA served as a vicious positive feedback to reduce tumor cell stiffness and adhesion, which eventually resulted in the proliferation, invasion, and metastasis of breast cancer. In conclusion, our results suggest that KCNK1 may serve as a potential breast cancer biomarker, and deeper insight into the cancer-promoting mechanism of KCNK1 may uncover a novel therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Histonas , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Proliferación Celular/genética , Animales , Línea Celular Tumoral , Histonas/metabolismo , Ratones , Regulación Neoplásica de la Expresión Génica , Regulación hacia Arriba/genética , Metástasis de la Neoplasia , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Lactato Deshidrogenasa 5/metabolismo , Lactato Deshidrogenasa 5/genética , Ratones Desnudos , Invasividad Neoplásica , Glucólisis/genética , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Ratones Endogámicos BALB C , Pronóstico , Movimiento Celular/genética
2.
J Cell Physiol ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946173

RESUMEN

Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.

3.
Mol Cancer ; 23(1): 108, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762484

RESUMEN

Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/etiología , Neoplasias/genética , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Animales , Transducción de Señal , Regulación Neoplásica de la Expresión Génica
4.
Mol Cancer ; 22(1): 32, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797764

RESUMEN

Transfer RNAs (tRNAs) are a class of non-coding RNAs responsible for amino acid translocation during protein synthesis and are ubiquitously found in organisms. With certain modifications and under specific conditions, tRNAs can be sheared and fragmented into small non-coding RNAs, also known as tRNA-derived small RNAs (tDRs). With the development of high-throughput sequencing technologies and bioinformatic strategies, more and more tDRs have been identified and their functions in organisms have been characterized. tRNA and it derived tDRs, have been shown to be essential not only for transcription and translation, but also for regulating cell proliferation, apoptosis, metastasis, and immunity. Aberrant expression of tDRs is associated with a wide range of human diseases, especially with tumorigenesis and tumor progression. The tumor microenvironment (TME) is a complex ecosystem consisting of various cellular and cell-free components that are mutually compatible with the tumor. It has been shown that tDRs regulate the TME by regulating cancer stem cells, immunity, energy metabolism, epithelial mesenchymal transition, and extracellular matrix remodeling, playing a pro-tumor or tumor suppressor role. In this review, the biogenesis, classification, and function of tDRs, as well as their effects on the TME and the clinical application prospects will be summarized and discussed based on up to date available knowledge.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Ecosistema , ARN de Transferencia/química , Neoplasias/metabolismo
5.
Cancer Sci ; 114(3): 870-884, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36382614

RESUMEN

Cancer cells prefer glycolysis to support their proliferation. Our previous studies have shown that the long palate, lung, and nasal epithelial cell clone 1 (LPLUNC1) can upregulate prohibitin 1 (PHB1) expression to inhibit the proliferation of nasopharyngeal carcinoma (NPC) cells. Given that PHB1 is an important regulator of cell energy metabolism, we explored whether and how LPLUNC1 regulated glucose glycolysis in NPC cells. LPLUNC1 or PHB1 overexpression decreased glycolysis and increased oxidative phosphorylation (OXPHOS)-related protein expression in NPC cells, promoting phosphorylated PHB1 nuclear translocation through 14-3-3σ. LPLUNC1 overexpression also increased p53 but decreased c-Myc expression in NPC cells, which were crucial for the decrease in glycolysis and increase in OXPHOS-related protein expression induced by LPLUNC1 overexpression. Finally, we found that treatment with all-trans retinoic acid (ATRA) reduced the viability and clonogenicity of NPC cells, decreased glycolysis, and increased OXPHOS-related protein expression by enhancing LPLUNC1 expression in NPC cells. Therefore, the LPLUNC1-PHB1-p53/c-Myc axis decreased glycolysis in NPC cells, and ATRA upregulated LPLUNC1 expression, ATRA maybe a promising drug for the treatment of NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Proliferación Celular , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Glucólisis , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patología , Tretinoina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Autoantígenos/metabolismo
6.
Br J Cancer ; 129(2): 204-221, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37095185

RESUMEN

Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.


Asunto(s)
Neoplasias , Procesamiento Postranscripcional del ARN , Humanos , ARN Mensajero/metabolismo , ARN/genética , ARN/metabolismo , Neoplasias/genética , Metilación
7.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903280

RESUMEN

Semiconductiong polymer nanoparticles (Pdots) have a wide range of applications in biomedical fields including biomolecular probes, tumor imaging, and therapy. However, there are few systematic studies on the biological effects and biocompatibility of Pdots in vitro and in vivo. The physicochemical properties of Pdots, such as surface modification, are very important in biomedical applications. Focusing on the central issue of the biological effects of Pdots, we systematically investigated the biological effects and biocompatibility of Pdots with different surface modifications and revealed the interactions between Pdots and organisms at the cellular and animal levels. The surfaces of Pdots were modified with different functional groups, including thiol, carboxyl, and amino groups, named Pdots@SH, Pdots@COOH, and Pdots@NH2, respectively. Extracellular studies showed that the modification of sulfhydryl, carboxyl, and amino groups had no significant effect on the physicochemical properties of Pdots, except that the amino modification affected the stability of Pdots to a certain extent. At the cellular level, Pdots@NH2 reduced cellular uptake capacity and increased cytotoxicity due to their instability in solution. At the in vivo level, the body circulation and metabolic clearance of Pdots@SH and Pdots@COOH were superior to those of Pdots@NH2. The four kinds of Pdots had no obvious effect on the blood indexes of mice and histopathological lesions in the main tissues and organs. This study provides important data for the biological effects and safety assessment of Pdots with different surface modifications, which pave the way for their potential biomedical applications.


Asunto(s)
Nanopartículas , Semiconductores , Animales , Polímeros/química , Imagen Óptica/métodos
8.
Gut ; 71(8): 1588-1599, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34930815

RESUMEN

OBJECTIVE: Recent studies have provided insights into the gut microbiota in autism spectrum disorder (ASD); however, these studies were restricted owing to limited sampling at the unitary stage of childhood. Herein, we aimed to reveal developmental characteristics of gut microbiota in a large cohort of subjects with ASD combined with interindividual factors impacting gut microbiota. DESIGN: A large cohort of 773 subjects with ASD (aged 16 months to 19 years), 429 neurotypical (NT) development subjects (aged 11 months to 15 years) were emolyed to determine the dynamics change of gut microbiota across different ages using 16S rRNA sequencing. RESULT: In subjects with ASD, we observed a distinct but progressive deviation in the development of gut microbiota characterised by persistently decreased alpha diversity, early unsustainable immature microbiota, altered aboudance of 20 operational taxonomic units (OTUs), decreased taxon detection rate and 325 deregulated microbial metabolic functions with age-dependent patterns. We further revealed microbial relationships that have changed extensively in ASD before 3 years of age, which were associated with the severity of behaviour, sleep and GI symptoms in the ASD group. This analysis demonstrated that a signature of the combination of 2 OTUs, Veillonella and Enterobacteriaceae, and 17 microbial metabolic functions efficiently discriminated ASD from NT subjects in both the discovery (area under the curve (AUC)=0.86), and validation 1 (AUC=0.78), 2 (AUC=0.82) and 3 (AUC=0.67) sets. CONCLUSION: Our large cohort combined with clinical symptom analysis highlights the key regulator of gut microbiota in the pathogenesis of ASD and emphasises the importance of monitoring and targeting the gut microbiome in future clinical applications of ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Microbiota , Trastorno del Espectro Autista/metabolismo , Niño , Estudios de Cohortes , Microbioma Gastrointestinal/genética , Humanos , ARN Ribosómico 16S/genética
9.
Semin Cancer Biol ; 76: 218-231, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33910064

RESUMEN

Cancer/testis antigens (CTAs) are a group of tumor antigens expressed in numerous cancer tissues, as well as in the testis and placental tissues. There are over 200 CTAs supported by serology and expression data. The expression patterns of CTAs reflect the similarities between the processes of gametogenesis and tumorigenesis. It is notable that CTAs are highly expressed in three types of cancers (lung cancer, bladder cancer, and skin cancer), all of which have a metal etiology. Here, we review the expression, regulation, and function of CTAs and their translational prospects as cancer biomarkers and treatment targets. Many CTAs are highly immunogenic, tissue-specific, and frequently expressed in cancer tissues but not under physiological conditions, rendering them promising candidates for cancer detection. Some CTAs are associated with clinical outcomes, so they may serve as prognostic biomarkers. A small number of CTAs are membrane-bound, making them ideal targets for chimeric antigen receptor (CAR) T cells. Mounting evidence suggests that CTAs induce humoral or cellular immune responses, providing cancer immunotherapeutic opportunities for T-cell receptors (TCRs), CAR T cell, antibody-based therapy and peptide- or mRNA-based vaccines. Indeed, CTAs are the dominating non-mutated targets in mRNA cancer vaccine development. Clinical trials on CTA TCR and vaccines have shown effectiveness, safety, and tolerance, but these successes are limited to a small number of patients. In-depth studies on CTA expression and function are needed to improve CTA-based immunotherapy.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Vacunas contra el Cáncer , Vacunas de ARNm , Animales , Antígenos de Neoplasias/uso terapéutico , Humanos , Inmunoterapia/métodos , Desarrollo de Vacunas
10.
Mol Cancer ; 21(1): 62, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227262

RESUMEN

BACKGROUND: Circular RNAs play an important role in tumor genesis and progression, but they have not been sufficiently studied in patients with nasopharyngeal carcinoma (NPC). METHODS: The circular RNA, circCAMSAP1, was screened in NPC cells by RNA sequencing analysis. The expression of circCAMSAP1 in NPC tissues was examined by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization. Wound-healing, transwell, MTT and flow cytometry assays, and nude mouse tumor models were used to explore the effect of circCAMSAP1 on proliferation and metastasis of NPC in vitro or in vivo. The downstream proteins regulated by circCAMSAP1 were screened using mass spectrometry. The interaction between circCAMSAP1 and the SERPINH1 mRNA was identified using the circular RNA immunoprecipitation method and the luciferase reporter assay. The interaction between SERPINH1 and transcription factor c-Myc was verified through Co-immunoprecipitation (Co-IP) and immunofluorescence. The effect of c-Myc on the generation of circCAMSAP1 was examined through RT-qPCR and chromatin immunoprecipitation. Finally, the splicing factors that promote the production of circCAMSAP1 were explored by RT-qPCR and RNA immunoprecipitation (RIP). RESULTS: We found that circCAMSAP1 was highly expressed in NPC tissues and promoted NPC proliferation and metastasis. Additionally, circCAMSAP1 promoted SERPINH1 expression through improved SERPINH1 mRNA stability by binding to the 3'-untranslated region (3'UTR) of SERPINH1. Highly expressed SERPINH1 reduced the ubiquitination-degradation rate of c-Myc, causing increased tumorigenesis. Meanwhile, c-Myc, cooperating with splicing factor 10 (SRSF10), could also promote CAMSAP1 pre-mRNA transcription and back-splicing, forming a positive feedback of circCAMSAP1 production, resulting in the proliferation and metastasis of NPC. CONCLUSIONS: Our findings revealed that circCAMSAP1 promotes NPC proliferation and metastasis by binding to the 3'UTR of SERPINH1, suggesting that the positive feedback of circCAMSAP1-SERPINH1-c-Myc may serve as a prognostic biomarker or therapeutic target in patients with NPC.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , Regiones no Traducidas 3' , Animales , Carcinogénesis/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Proteínas del Choque Térmico HSP47 , Humanos , Ratones , MicroARNs/genética , Proteínas Asociadas a Microtúbulos , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Factores de Empalme de ARN/genética , ARN Circular/genética , Proteínas Represoras , Factores de Empalme Serina-Arginina/metabolismo
11.
Mol Cancer ; 21(1): 192, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199071

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) act as gene expression regulators and are involved in cancer progression. However, their functions have not been sufficiently investigated in nasopharyngeal carcinoma (NPC). METHODS: The expression profiles of circRNAs in NPC cells within different metastatic potential were reanalyzed. Quantitative reverse transcription PCR and in situ hybridization were used to detect the expression level of circPVT1 in NPC cells and tissue samples. The association of expression level of circPVT1 with clinical properties of NPC patients was evaluated. Then, the effects of circPVT1 expression on NPC metastasis were investigated by in vitro and in vivo functional experiments. RNA immunoprecipitation, pull-down assay and western blotting were performed to confirm the interaction between circPVT1 and ß-TrCP in NPC cells. Co-immunoprecipitation and western blotting were performed to confirm the interaction between ß-TrCP and c-Myc in NPC cells. RESULTS: We find that circPVT1, a circular RNA, is significantly upregulated in NPC cells and tissue specimens. In vitro and in vivo experiments showed that circPVT1 promotes the invasion and metastasis of NPC cells. Mechanistically, circPVT1 inhibits proteasomal degradation of c-Myc by binding to ß-TrCP, an E3 ubiquiting ligase. Stablization of c-Myc by circPVT1 alters the cytoskeleton remodeling and cell adhesion in NPC, which ultimately promotes the invasion and metastasis of NPC cells. Furthermore, c-Myc transcriptionally upregulates the expression of SRSF1, an RNA splicing factor, and recruits SRSF1 to enhance the biosynthesis of circPVT1 through coupling transcription with splicing, which forms a positive feedback for circPVT1 production. CONCLUSIONS: Our results revealed the important role of circPVT1 in the progression of NPC through the ß-TrCP/c-Myc/SRSF1 positive feedback loop, and circPVT1 may serve as a prognostic biomarker or therapeutic target in patients with NPC.


Asunto(s)
Carcinoma , MicroARNs , Neoplasias Nasofaríngeas , Biomarcadores , Carcinoma/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Humanos , Ligasas/genética , MicroARNs/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , ARN , Factores de Empalme de ARN/genética , ARN Circular/genética , Factores de Empalme Serina-Arginina , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo
12.
Br J Cancer ; 126(8): 1113-1124, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34750493

RESUMEN

Alternative splicing (AS) is a key process in which precursor RNAs produce different mature RNAs, and the disorder of AS is a key factor in promoting cancer development. Compared with coding RNA, studies on the functions of long non-coding RNAs (lncRNAs) are far from enough. In fact, lncRNA is an important participant and regulator in the process of AS. On the one hand, lncRNAs regulate cancer progression as AS products of precursor messenger RNA (mRNA), but on the other hand, precursor lncRNA generates cancer-related abnormal splicing variants through AS. In addition, lncRNAs directly or indirectly regulate the AS events of downstream target genes, thus affecting the occurrence and development of cancer. Here, we reviewed how lncRNAs regulate AS and influence oncogenesis in different ways.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Empalme Alternativo/genética , Transformación Celular Neoplásica , Humanos , Neoplasias/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero
13.
Cell Mol Life Sci ; 78(1): 173-193, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32654036

RESUMEN

The successful treatment of human cancers by immunotherapy has been made possible by breakthroughs in the discovery of immune checkpoint regulators, including CTLA-4 and PD-1/PD-L1. However, the immunosuppressive effect of the tumor microenvironment still represents an important bottleneck that limits the success of immunotherapeutic approaches. The tumor microenvironment influences the metabolic crosstalk between tumor cells and tumor-infiltrating immune cells, creating competition for the utilization of nutrients and promoting immunosuppression. In addition, tumor-derived metabolites regulate the activation and effector function of immune cells through a variety of mechanisms; in turn, the metabolites and other factors secreted by immune cells can also become accomplices to cancer development. Immune-metabolic checkpoint regulation is an emerging concept that is being studied with the aim of restoring the immune response in the tumor microenvironment. In this review, we summarize the metabolic reprogramming of various cell types present in the tumor microenvironment, with a focus on the interaction between the metabolic pathways of these cells and antitumor immunosuppression. We also discuss the main metabolic checkpoints that could provide new means of enhancing antitumor immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias/patología , Microambiente Tumoral , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Humanos , Células Supresoras de Origen Mieloide/citología , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Macrófagos Asociados a Tumores/citología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
14.
J Environ Manage ; 307: 114574, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085961

RESUMEN

Due to the increasingly frequent occurrence of urban waterlogging, the spatial optimization of low impact development (LID) practices has been commonly used to detain and reduce storm water runoff in the most cost-effective way. In this study, the flow transmission chain (FTC) was proposed to replace the routing portion of the Storm Water Management Model (SWMM) and was combined with the runoff component of the SWMM to simulate LID practices (SWMM-FTC). In the SWMM-FTC, the third Evolution Step of Generalized Differential Evolution (GDE3) was employed to optimize the LID layout design. The results showed that the relative error between the modified SWMM-FTC and the calibrated SWMM was less than 0.25% under various LID scenarios, and the computational efficiency of the SWMM-FTC was improved by 19.3 times. Moreover, the GDE3 outperformed the commonly used non-dominated sorting genetic algorithm (NSGA-II), the strength Pareto evolutionary algorithm (SPEA2), and the multi-objective shuffled frog leaping algorithm (MOSFLA) due to its ability to find the most cost-effective solution. The LID layout obtained from the SWMM-FTC with the GDE3 saved $210-1067 to achieve a 1% reduction in storm water runoff. This result demonstrates that the SWMM-FTC with the GDE3 can achieve higher environmental benefits than comparable models, providing better guidance for managers and stakeholders.


Asunto(s)
Lluvia , Movimientos del Agua , Algoritmos , Análisis Costo-Beneficio , Modelos Teóricos , Agua
15.
Mol Cancer ; 20(1): 7, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397409

RESUMEN

BACKGROUND: Vasculogenic mimicry (VM) is a recently discovered angiogenetic process found in many malignant tumors, and is different from the traditional angiogenetic process involving vascular endothelium. It involves the formation of microvascular channels composed of tumor cells; therefore, VM is considered a new model for the formation of new blood vessels in aggressive tumors, and can provide blood supply for tumor growth. Many studies have pointed out that in recent years, some clinical treatments against angiogenesis have not been satisfactory possibly due to the activation of VM. Although the mechanisms underlying VM have not been fully elucidated, increasing research on the soil "microenvironment" for tumor growth suggests that the initial hypoxic environment in solid tumors is inseparable from VM. MAIN BODY: In this review, we describe that the stemness and differentiation potential of cancer stem cells are enhanced under hypoxic microenvironments, through hypoxia-induced epithelial-endothelial transition (EET) and extracellular matrix (ECM) remodeling to form the specific mechanism of vasculogenic mimicry; we also summarized some of the current drugs targeting VM through these processes, suggesting a new reference for the clinical treatment of tumor angiogenesis. CONCLUSION: Overall, the use of VM inhibitors in combination with conventional anti-angiogenesis treatments is a promising strategy for improving the effectiveness of targeted angiogenesis treatments; further, considering the importance of hypoxia in tumor invasion and metastasis, drugs targeting the hypoxia signaling pathway seem to achieve good results.


Asunto(s)
Imitación Molecular , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/patología , Hipoxia Tumoral , Microambiente Tumoral , Animales , Humanos , Células Madre Neoplásicas/patología
16.
Mol Cancer ; 20(1): 112, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465340

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are widely expressed in human cells and are closely associated with cancer development. However, they have rarely been investigated in the context of nasopharyngeal carcinoma (NPC). METHODS: We screened a new circRNA, circRNF13, in NPC cells using next-generation sequencing of mRNA. Reverse transcription polymerase chain reaction and RNA fluorescence in situ hybridization were used to detect circRNF13 expression in 12 non-tumor nasopharyngeal epithelial (NPE) tissues and 36 NPC samples. Cell proliferation was detected using MTT and flow cytometry assays, and colony formation capability was detected using colony formation assays. Cell migration and invasion were analyzed using wound-healing and Transwell assays, respectively. Cell glycolysis was analyzed using the Seahorse glycolytic stress test. Glucose transporter type 1 (GLUT1) ubiquitination and SUMOylation modifications were analyzed using co-immunoprecipitation and western blotting. CircRNF13 and Small Ubiquitin-like Modifier 2 (SUMO2) interactions were analyzed using RNA pull-down and luciferase reporter assays. Finally, to test whether circRNF13 inhibited NPC proliferation and metastasis in vivo, we used a xenograft nude mouse model generated by means of subcutaneous or tail vein injection. RESULTS: We found that circRNF13 was stably expressed at low levels in NPC clinical tissues and NPC cells. In vitro and in vivo experiments showed that circRNF13 inhibited NPC proliferation and metastasis. Moreover, circRNF13 activated the SUMO2 protein by binding to the 3'- Untranslated Region (3'-UTR) of the SUMO2 gene and prolonging the half-life of SUMO2 mRNA. Upregulation of SUMO2 promotes GLUT1 degradation through SUMOylation and ubiquitination of GLUT1, which regulates the AMPK-mTOR pathway by inhibiting glycolysis, ultimately resulting in the proliferation and metastasis of NPC. CONCLUSIONS: Our results revealed that a novel circRNF13 plays an important role in the development of NPC through the circRNF13-SUMO2-GLUT1 axis. This study implies that circRNF13 mediates glycolysis in NPC by binding to SUMO2 and provides an important theoretical basis for further elucidating the pathogenesis of NPC and targeted therapy.


Asunto(s)
Carcinoma Nasofaríngeo/genética , ARN Circular/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Humanos , Hibridación Fluorescente in Situ , Ratones , Modelos Biológicos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Interferencia de ARN , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cancer Sci ; 112(5): 1785-1797, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33788346

RESUMEN

The pathogenesis and cisplatin chemoresistance of ovarian cancer (OC) are still unclear. Vacuolar protein sorting-associated 33B (VPS33B) has not been reported in OC to date. In this study, immunohistochemistry was used to detect VPS33B protein expression between OC and ovarian tissues. MTT, EdU, colony formation, cell cycle, in vivo tumorigenesis, western blot, ChIP, EMSA, co-immunoprecipitation (CoIP), qRT-PCR, and microconfocal microscopy were used to explore the function and molecular mechanisms of VPS33B in OC cells. The results of the present study demonstrated that VPS33B protein expression was obviously reduced in OC compared with that in ovarian tissues. Overexpressed VPS33B suppressed cell cycle transition, cell growth, and chemoresistance to cisplatin in vitro and in vivo. Analysis of the mechanism indicated that overexpressed VPS33B regulated the epidermal growth factor receptor (EGFR)/PI3K/AKT/c-Myc/p53/miR-133a-3p feedback loop and reduced the expression of the cell cycle factor CDK4. Nasopharyngeal epithelium-specific protein 1 (NESG1) as a tumor suppressor not only interacted with VPS33B, but was also induced by VPS33B by the attenuation of PI3K/AKT/c-Jun-mediated transcription inhibition. Overexpressed NESG1 further suppressed cell growth by mediating VPS33B-modulated signals in VPS33B-overexpressing OC cells. Finally, NESG1 induced VPS33B expression by reducing the inhibition of PI3K/AKT/c-Jun-mediated transcription. Our study is the first to demonstrate that VPS33B serves as a tumor suppressor, and VPS33B can interact with NESG1 to suppress cell growth and promote cisplatin sensitivity by regulating the EGFR/PI3K/AKT/c-Myc/p53/miR-133a-3p feedback loop in OC cells.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Antineoplásicos/farmacología , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cisplatino/farmacología , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas del Citoesqueleto/genética , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Femenino , Genes Supresores de Tumor , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , Invasividad Neoplásica , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
18.
BMC Microbiol ; 21(1): 265, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34607559

RESUMEN

BACKGROUND: Preeclampsia (PE) is a condition of high blood pressure that is usually concurrent with proteinuria in pregnancy. PE complicates the management of both maternal and fetal health and contributes to most adverse pregnancy outcomes, but the mechanism underlying the development of PE remains unclear. In this study, we performed a case-control study to compare the gut microbiota of PE (n = 26), abnormal placental growth (APG, n = 25) and healthy pregnant women (n = 28) and analyzed the potential pathogenic role of gut microbiota in PE progression. RESULTS: The clinical pathophysiological state did not affect the bacterial diversity, while the compositions of the gut microbiota were significantly altered in both the PE and APG groups compared with healthy pregnant women. At the phylum level, TM7 was significantly increased in women with APG. Heterogeneity was observed at the genus level, especially in genera with positive LDA scores, suggesting the stage-dependent effect of gut microbiota on the development of PE. The beneficial bacterium Lactobacillus was markedly depleted in the PE and APG groups but was only correlated with blood pressure (BP) and proteinuria levels in the PE group. Two different bacterial taxa belonged to Lactobacillus showed different correlations (OTU255 and OTU784 were significantly related to PE and APG, respectively). CONCLUSIONS: Our results indicated that shifts in the gut microbiota might occur from the early stages of the development of PE, which is of possible etiological and therapeutic importance.


Asunto(s)
Disbiosis/complicaciones , Disbiosis/microbiología , Preeclampsia/microbiología , Adulto , Bacterias/clasificación , Estudios de Casos y Controles , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Humanos , Placenta/patología , Enfermedades Placentarias/microbiología , Embarazo , ARN Ribosómico 16S/genética
19.
FASEB J ; 34(12): 16205-16223, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33094864

RESUMEN

Epstein-Barr virus (EBV) infection leads to cancers with an epithelial origin, such as nasopharyngeal cancer and gastric cancer, as well as multiple blood cell-based malignant tumors, such as lymphoma. Interestingly, EBV is also the first virus found to carry genes encoding miRNAs. EBV encodes 25 types of pre-miRNAs which are finally processed into 44 mature miRNAs. Most EBV-encoded miRNAs were found to be involved in the occurrence and development of EBV-related tumors. However, the function of EBV-miR-BART12 remains unclear. The findings of the current study revealed that EBV-miR-BART12 binds to the 3'UTR region of Tubulin Polymerization-Promoting Protein 1 (TPPP1) mRNA and downregulates TPPP1, thereby promoting the invasion and migration of EBV-related cancers, such as nasopharyngeal cancer and gastric cancer. The mechanism underlying this process was found to be the inhibition of TPPP1 by EBV-miRNA-BART12, which, in turn, inhibits the acetylation of α-tubulin, and promotes the dynamic assembly of microtubules, remodels the cytoskeleton, and enhances the acetylation of ß-catenin. ß-catenin activates epithelial to mesenchymal transition (EMT). These two processes synergistically promote the invasion and metastasis of tumor cells. To the best of our knowledge, this is the first study to reveal the role of EBV-miRNA-BART12 in the development of EBV-related tumors as well as the mechanism underlying this process, and suggests potential targets and strategies for the treatment of EBV-related tumors.


Asunto(s)
Movimiento Celular/genética , Proteínas del Citoesqueleto/genética , Herpesvirus Humano 4/genética , MicroARNs/genética , Carcinoma Nasofaríngeo/virología , Neoplasias Gástricas/virología , Factores de Transcripción/genética , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Carcinoma Nasofaríngeo/genética , Polimerizacion , ARN Viral/genética , Neoplasias Gástricas/genética , beta Catenina/genética
20.
FASEB J ; 34(6): 8012-8027, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32306460

RESUMEN

Epstein-Barr virus (EBV) is a tumorigenic virus that can cause various human malignancies such as nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV encodes 44 mature micro (mi)RNAs, mostly exhibiting oncogenic properties and promoting cancer progression. However, we have previously found that one EBV-encoded miRNA, namely EBV-miR-BART6-3p, acts as a tumor suppressor by inhibiting metastasis and invasion. Here, we report that EBV-miR-BART6-3p inhibits the proliferation of EBV-associated cancers, NPC, and GC, by targeting and downregulating a long non-coding RNA (lncRNA), LOC553103. Through proteomics analysis, we determined that stathmin (STMN1) is affected by EBV-miR-BART6-3p and LOC553103. Further, via RNA immunoprecipitation and luciferase reporter assay, we confirmed that LOC553103 directly binds and stabilizes the 3'UTR region of STMN1 mRNA. These results indicate that the EBV-miR-BART6-3p/LOC553103/STMN1 axis regulates the expression of cell cycle-associated proteins, which then inhibit EBV-associated tumor cell proliferation. These findings provide potential targets or strategies for novel EBV-related cancer treatments, as well as contributes new insights into the understanding of EBV infection-related carcinogenesis.


Asunto(s)
Proliferación Celular/genética , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Estatmina/genética , Regiones no Traducidas 3'/genética , Animales , Carcinogénesis/genética , Línea Celular , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , ARN Viral/genética , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA